TLG 0552 005 :: ARCHIMEDES :: De planorum aequilibriis

ARCHIMEDES Geom.
(Syracusanus: 3 B.C.)

De planorum aequilibriis

Source: Mugler, C. (ed.), Archimède, vol. 2. Paris: Les Belles Lettres, 1971: 80–125.

Citation: Volume — page — (line)

2

.

80

Ἐπιπέδων ἰσορροπιῶν ἢ κέντρα βαρῶν ἐπιπέδων αʹ αʹ. Αἰτούμεθα τὰ ἴσα βάρεα ἀπὸ ἴσων μακέων ἰσορροπεῖν, τὰ δὲ ἴσα βάρεα ἀπὸ τῶν ἀνίσων μακέων μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος τὸ ἀπὸ τοῦ
5μείζονος μάκεος. βʹ. Εἴ κα βαρέων ἰσορροπεόντων ἀπό τινων μακέων ποτὶ τὸ ἕτερον τῶν βαρέων ποτιτεθῇ, μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος ἐκεῖνο, ᾧ ποτετέθη. γʹ. Ὁμοίως δὲ καί, εἴ κα ἀπὸ τοῦ ἑτέρου τῶν βαρέων
10ἀφαιρεθῇ τι, μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος, ἀφ’ οὗ οὐκ ἀφῃρέθη. δʹ. Τῶν ἴσων καὶ ὁμοίων σχημάτων ἐπιπέδων ἐφαρ‐ μοζομένων ἐπ’ ἄλλαλα καὶ τὰ κέντρα τῶν βαρέων ἐφαρμόζει ἐπ’ ἄλλαλα.
15 εʹ. Τῶν δὲ ἀνίσων, ὁμοίων δέ, τὰ κέντρα τῶν βαρέων ὁμοίως ἐσσεῖται κείμενα. Ὁμοίως δὲ λέγομες σαμεῖα κέεσθαι ποτὶ τὰ ὁμοῖα σχήματα, ἀφ’ ὧν ἐπὶ τὰς ἴσας γωνίας ἀγόμεναι εὐθεῖαι ποιέοντι γωνίας ἴσας ποτὶ τὰς ὁμολόγους πλευράς.
20 ϛʹ. Εἴ κα μεγέθεα ἀπό τινων μακέων ἰσορροπέωντι, καὶ τὰ ἴσα αὐτοῖς ἀπὸ τῶν αὐτῶν μακέων ἰσορροπήσει.
ζʹ. Παντὸς σχήματος, οὗ κα ἁ περίμετρος ἐπὶ τὰ80

2

.

81

αὐτὰ κοῖλα ᾖ, τὸ κέντρον τοῦ βάρεος ἐντὸς εἶμεν δεῖ τοῦ σχήματος. Τούτων δὲ ὑποκειμένων
αʹ.
5 Τὰ ἀπὸ ἴσων μακέων ἰσορροπέοντα βάρεα ἴσα ἐντί. Εἴπερ γὰρ ἄνισα ἐσσεῖται, ἀφαιρεθείσας ἀπὸ τοῦ μείζονος τᾶς ὑπεροχᾶς τὰ λοιπὰ οὐκ ἰσορροπησοῦντι, ἐπειδὴ ἰσορροπεόντων ἀπὸ τοῦ ἑτέρου ἀφῄρηται. Ὥστε τὰ ἀπὸ τῶν ἴσων μακέων βάρεα ἰσορροπέοντα ἴσα ἐντί.
10
βʹ. Τὰ ἀπὸ τῶν ἴσων μακέων ἄνισα βάρεα οὐκ ἰσορροπέοντι, ἀλλὰ ῥέψει ἐπὶ τὸ μεῖζον. Ἀφαιρεθείσας γὰρ τᾶς ὑπεροχᾶς ἰσορροπησοῦντι, ἐπειδὴ τὰ ἴσα ἀπὸ τῶν ἴσων μακέων ἰσορροπέοντι. Ποτιτε‐
15θέντος οὖν τοῦ ἀφαιρεθέντος ῥέψει ἐπὶ τὸ μεῖζον, ἐπεὶ ἰσορροπεόντων τῷ ἑτέρῳ ποτετέθη.
γʹ. Τὰ ἄνισα βάρεα ἀπὸ τῶν ἀνίσων μακέων ἰσορροπησοῦντι,
καὶ τὸ μεῖζον ἀπὸ τοῦ ἐλάσσονος. [Omitted graphic marker]81

2

.

82

Ἔστω ἄνισα βάρεα τὰ Α, Β, καὶ ἔστω μεῖζον τὸ Α, καὶ ἰσορροπεόντων ἀπὸ τῶν ΑΓ, ΓΒ μακέων. Δεικτέον ὅτι ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ. Μὴ γὰρ ἔστω ἐλάσσων. Ἀφαιρεθείσας δὴ τᾶς ὑπεροχᾶς,
5ᾇ ὑπερέχει τὸ Α τοῦ Β, ἐπειδὴ ἰσορροπεόντων ἀπὸ τοῦ ἑτέρου ἀφῄρηται, ῥέψει ἐπὶ τὸ Β. Οὐ ῥέψει δέ· εἴτε γὰρ ἴσα ἐστὶν ἁ ΓΑ τᾷ ΓΒ, ἰσορροπησοῦντι [τὰ γὰρ ἴσα ἀπὸ τῶν ἴσων μακέων], εἴτε μείζων ἁ ΓΑ τᾶς ΓΒ, ῥέπει ἐπὶ τὸ Α· τὰ γὰρ ἴσα ἀπὸ τῶν ἀνίσων μακέων οὐκ ἰσορρο‐
10πέοντι, ἀλλὰ ῥέπει ἐπὶ τὸ ἀπὸ τοῦ μείζονος μάκεος. Διὰ δὴ ταῦτα ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ. Φανερὸν δὲ ὅτι καὶ τὰ ἀπὸ τῶν ἀνίσων μακέων ἰσορρο‐ πέοντα ἄνισά ἐντι, καὶ μεῖζόν ἐστι τὸ ἀπὸ τοῦ ἐλάσσονος.
δʹ.
15 Εἴ κα δύο ἴσα μεγέθεα μὴ τὸ αὐτὸ κέντρον τοῦ βάρεος ἔχωντι, τοῦ ἐξ ἀμφοτέρων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ μέσον τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τῶν μεγεθέων τὰ κέντρα τοῦ βάρεος.
20 Ἔστω τοῦ μὲν Α κέντρον τοῦ βάρεος τὸ Α, τοῦ δὲ Β τὸ Β, καὶ ἐπιζευχθεῖσα ἁ ΑΒ τετμάσθω δίχα κατὰ τὸ Γ· λέγω ὅτι τοῦ ἐξ ἀμφοτέρων τῶν μεγεθέων συγκειμένου
μεγέθεος κέντρον ἐστὶ τὸ Γ. [Omitted graphic marker]82

2

.

83

Εἰ γὰρ μή, ἔστω [τοῦ ἐξ ἀμφοτέρων τῶν Α, Β μεγεθῶν] κέντρον τοῦ βάρεος τὸ Δ, εἰ δυνατόν [ὅτι γὰρ ἔστιν ἐπὶ τῆς ΑΒ προδέδεικται]. Ἐπεὶ οὖν τὸ Δ σαμεῖον κέντρον ἐστὶν τοῦ βάρεος τοῦ ἐκ τῶν Α, Β συγκειμένου μεγέθεος,
5κατεχομένου τοῦ Δ ἰσορροπήσει· τὰ ἄρα Α, Β μεγέθεα ἰσορροπησοῦντι ἀπὸ τῶν ΑΔ, ΔΒ μακέων· ὅπερ ἀδύνατον [τὰ γὰρ ἴσα ἀπὸ τῶν ἀνίσων μακέων οὐκ ἰσορροπέοντι]. Δῆλον οὖν ὅτι τὸ Γ κέντρον ἐστὶ τοῦ βάρεος τοῦ ἐκ τῶν Α, Β συγκειμένου μεγέθεος.
10
εʹ. Εἴ κα τριῶν μεγεθέων τὰ κέντρα τοῦ βάρεος ἐπ’ εὐθείας ἔωντι κείμενα, καὶ τὰ μεγέθεα ἴσον βάρος ἔχωντι, καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται
15τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου τὸ αὐτὸ κέντρον ἐστὶ τοῦ βάρεος. [Omitted graphic marker] Ἔστω τρία μεγέθεα τὰ Α, Β, Γ, κέντρα δὲ αὐτῶν τοῦ βάρεος τὰ Α, Β, Γ σαμεῖα ἐπ’ εὐθείας κείμενα, ἔστω δὲ τά τε Α, Β, Γ ἴσα καὶ αἱ ΑΓ, ΓΒ ἴσαι εὐθεῖαι· λέγω ὅτι
20τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Γ σαμεῖον. Ἐπεὶ γὰρ τὰ Α, Β μεγέθεα ἴσον βάρος ἔχει, κέντρον
ἐσσεῖται τοῦ βάρεος τὸ Γ σαμεῖον, ἐπειδὴ ἴσαι ἐντὶ αἱ83

2

.

84

ΑΓ, ΓΒ. Ἔστιν δὲ καὶ τοῦ Γ κέντρον τοῦ βάρεος τὸ Γ σαμεῖον· δῆλον οὖν ὅτι καὶ τοῦ ἐκ πάντων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου κέντρον ἐστὶ τοῦ βάρεος.
5tΠΟΡΙΣΜΑ Αʹ
6 Ἐκ δὴ τούτων φανερὸν ὅτι, ὁπόσων κα τῷ πλήθει περισσῶν μεγεθέων τὰ κέντρα τοῦ βάρεος ἐπ’ εὐθείας ἔωντι κείμενα, εἴ κα τά τε ἴσον ἀπέχοντα ἀπὸ τοῦ μέσου μεγέθεα ἴσον βάρος ἔχωντι, καὶ αἱ εὐθεῖαι αἱ μεταξὺ τῶν
10κέντρων αὐτῶν ἴσαι ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου αὐτῶν κέντρον ἐστὶ τοῦ βάρεος.
13tΠΟΡΙΣΜΑ Βʹ
14Εἴ κα καὶ ἄρτια ἔωντι τῷ πλήθει τὰ μεγέθεα, καὶ τὰ
15κέντρα τοῦ βάρεος αὐτῶν ἐπ’ εὐθείας ἔωντι κείμενα, καὶ τὰ μέσα αὐτῶν καὶ τὰ ἴσα ἀπέχοντα ἀπ’ αὐτῶν ἴσον βάρος ἔχωντι, καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι [Omitted graphic marker] ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ μέσον τᾶς εὐθείας τᾶς
20ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος τῶν μεγεθέων,
ὡς ὑπογέγραπται.84

2

.

85

ϛʹ. Τὰ σύμμετρα μεγέθεα ἰσορροπέοντι ἀπὸ μακέων ἀντιπε‐ πονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς βάρεσιν. Ἔστω σύμμετρα μεγέθεα τὰ Α, Β, ὧν κέντρα τὰ Α, Β,
5καὶ μᾶκος ἔστω τι τὸ ΕΔ, καὶ ἔστω ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ ΔΓ μᾶκος ποτὶ τὸ ΓΕ μᾶκος· δεικτέον ὅτι τοῦ ἐξ ἀμφοτέρων τῶν Α, Β συγκειμένου μεγέθεος κέντρον ἐστὶ τοῦ βάρεος τὸ Γ. [Omitted graphic marker] Ἐπεὶ γάρ ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ ΔΓ ποτὶ
10τὸ ΓΕ, τὸ δὲ Α τῷ Β σύμμετρον, καὶ τὸ ΓΔ ἄρα τῷ ΓΕ σύμμετρον, τουτέστιν εὐθεῖα τᾷ εὐθείᾳ· ὥστε τῶν ΕΓ, ΓΔ ἐστὶ κοινὸν μέτρον. Ἔστω δὴ τὸ Ν, καὶ κείσθω τᾷ μὲν ΕΓ ἴσα ἑκατέρα τᾶν ΔΗ, ΔΚ, τᾷ δὲ ΔΓ ἴσα ἁ ΕΛ. Καὶ ἐπεὶ ἴσα ἁ ΔΗ τᾷ ΓΕ, ἴσα καὶ ἁ ΔΓ τᾷ ΕΗ· ὥστε
15καὶ ἁ ΛΕ ἴσα τᾷ ΕΗ. Διπλασία ἄρα ἁ μὲν ΛΗ τᾶς ΔΓ, ἁ δὲ ΗΚ τᾶς ΓΕ· ὥστε τὸ Ν καὶ ἑκατέραν τᾶν ΛΗ, ΗΚ μετρεῖ, ἐπειδήπερ καὶ τὰ ἡμίσεα αὐτᾶν. Καὶ ἐπεί ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως ἁ ΔΓ ποτὶ ΓΕ, ὡς δὲ ἁ ΔΓ ποτὶ
ΓΕ, οὕτως ἁ ΛΗ ποτὶ ΗΚ· διπλασία γὰρ ἑκατέρα ἑκατέρας·85

2

.

86

καὶ ὡς ἄρα τὸ Α ποτὶ τὸ Β, οὕτως ἁ ΛΗ ποτὶ ΗΚ. Ὁσα‐ πλασίων δέ ἐστιν ἁ ΛΗ τᾶς Ν, τοσαυταπλασίων ἔστω καὶ τὸ Α τοῦ Ζ· ἔστιν ἄρα ὡς ἁ ΛΗ ποτὶ Ν, οὕτως τὸ Α ποτὶ Ζ. Ἔστι δὲ καὶ ὡς ἁ ΚΗ ποτὶ ΛΗ, οὕτως τὸ Β
5ποτὶ Α· δι’ ἴσου ἄρα ἐστὶν ὡς ἁ ΚΗ ποτὶ Ν, οὕτως τὸ Β ποτὶ Ζ· ἰσάκις ἄρα πολλαπλασίων ἐστὶν ἁ ΚΗ τᾶς Ν καὶ τὸ Β τοῦ Ζ. Ἐδείχθη δὲ τοῦ Ζ καὶ τὸ Α πολλαπλάσιον ἐόν· ὥστε τὸ Ζ τῶν Α, Β κοινόν ἐστι μέτρον. Διαιρεθείσας οὖν τᾶς μὲν ΛΗ εἰς τὰς τᾷ Ν ἴσας, τοῦ δὲ Α εἰς τὰ τῷ Ζ
10ἴσα, τὰ ἐν τᾷ ΛΗ τμάματα ἰσομεγέθεα τᾷ Ν ἴσα ἐσσεῖται τῷ πλήθει τοῖς ἐν τῷ Α τμαμάτεσσιν ἴσοις ἐοῦσιν τῷ Ζ. Ὥστε, ἂν ἐφ’ ἕκαστον τῶν τμαμάτων τῶν ἐν τᾷ ΛΗ ἐπιτεθῇ μέγεθος ἴσον τῷ Ζ τὸ κέντρον τοῦ βάρεος ἔχον ἐπὶ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐντὶ
15τῷ Α, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον ἐσσεῖται τοῦ βάρεος τὸ Ε· ἄρτιά τε γάρ ἐστι τὰ πάντα τῷ πλήθει, καὶ τὰ ἐφ’ ἑκάτερα τοῦ Ε ἴσα τῷ πλήθει διὰ τὸ ἴσαν εἶμεν τὰν ΛΕ τᾷ ΗΕ. Ὁμοίως δὲ δειχθήσεται ὅτι κἄν, εἴ κα ἐφ’ ἕκαστον τῶν ἐν τᾷ ΚΗ τμαμάτων ἐπιτεθῇ μέγεθος
20ἴσον τῷ Ζ κέντρον τοῦ βάρεος ἔχον ἐπὶ τοῦ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐσσεῖται τῷ Β, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον τοῦ βάρεος ἐσσεῖται τὸ Δ· ἐσσεῖται οὖν τὸ μὲν Α ἐπικείμενον κατὰ τὸ Ε, τὸ δὲ Β κατὰ τὸ Δ. Ἐσσεῖται δὴ μεγέθεα ἴσα ἀλλάλοις
25ἐπ’ εὐθείας κείμενα, ὧν τὰ κέντρα τοῦ βάρεος ἴσα ἀπ’ ἀλλάλων διέστακεν, [συγκείμενα] ἄρτια τῷ πλήθει· δῆλον οὖν ὅτι τοῦ ἐκ πάντων συγκειμένου μεγέθεος
κέντρον ἐστὶ τοῦ βάρεος ἁ διχοτομία τᾶς εὐθείας τᾶς86

2

.

87

ἐχούσας τὰ κέντρα τῶν μέσων μεγεθέων. Ἐπεὶ δ’ ἴσαι ἐντὶ ἁ μὲν ΛΕ τᾷ ΓΔ, ἁ δὲ ΕΓ τᾷ ΔΚ, καὶ ὅλα ἄρα ἁ ΛΓ ἴσα τᾷ ΓΚ· ὥστε τοῦ ἐκ πάντων μεγέθεος κέντρον τοῦ βάρεος τὸ Γ σαμεῖον. Τοῦ μὲν ἄρα Α κειμένου κατὰ τὸ
5Ε, τοῦ δὲ Β κατὰ τὸ Δ, ἰσορροπησοῦντι κατὰ τὸ Γ.
ζʹ. Καὶ τοίνυν, εἴ κα ἀσύμμετρα ἔωντι τὰ μεγέθεα, ὁμοίως ἰσορροπησοῦντι ἀπὸ μακέων ἀντιπεπονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς μεγέθεσιν. [Omitted graphic marker]
10 Ἔστω ἀσύμμετρα μεγέθεα τὰ ΑΒ, Γ, μάκεα δὲ τὰ ΔΕ, ΕΖ, ἐχέτω δὲ τὸ ΑΒ ποτὶ τὸ Γ τὸν αὐτὸν λόγον, ὃν καὶ τὸ ΕΔ ποτὶ τὸ ΕΖ μᾶκος· λέγω ὅτι τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, Γ κέντρον τοῦ βάρεός ἐστι τὸ Ε. Εἰ γὰρ μὴ ἰσορροπήσει τὸ ΑΒ τεθὲν ἐπὶ τῷ Ζ τῷ Γ τεθέντι
15ἐπὶ τῷ Δ, ἤτοι μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν [τῷ Γ] ἢ οὔ. Ἔστω μεῖζον, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ ἔλασσον τᾶς ὑπεροχᾶς, ᾇ μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν, ὥστε [τὸ] λοιπὸν τὸ Α σύμμετρον
εἶμεν τῷ Γ. Ἐπεὶ οὖν σύμμετρά ἐστι τὰ Α, Γ μεγέθεα,87

2

.

88

καὶ ἐλάσσονα λόγον ἔχει τὸ Α ποτὶ τὸ Γ ἢ ἁ ΔΕ ποτὶ ΕΖ, οὐκ ἰσορροπησοῦντι τὰ Α, Γ ἀπὸ τῶν ΔΕ, ΕΖ μακέων, τεθέντος τοῦ μὲν Α ἐπὶ τῷ Ζ, τοῦ δὲ Γ ἐπὶ τῷ Δ. Διὰ ταὐτὰ δ’, οὐδ’ εἰ τὸ Γ μεῖζόν ἐστιν ἢ ὥστε ἰσορροπεῖν τῷ ΑΒ.
5
ηʹ. Εἴ κα ἀπό τινος μεγέθεος ἀφαιρεθῇ τι μέγεθος μὴ τὸ αὐτὸ κέντρον ἔχον τῷ ὅλῳ, τοῦ λοιποῦ μεγέθεος κέντρον ἐστὶ τοῦ βάρεος, ἐκβληθείσας τᾶς εὐθείας τᾶς ἐπιζευ‐ γνυούσας τὰ κέντρα τῶν βαρέων τοῦ τε ὅλου μεγέθεος
10καὶ τοῦ ἀφῃρημένου ἐπὶ τὰ αὐτά, ἐφ’ ἃ τὸ κέντρον τοῦ ὅλου μεγέθεος, καὶ ἀπολαφθείσας τινὸς ἀπὸ [τᾶς] ἐκβλη‐ θείσας τᾶς ἐπιζευγνυούσας τὰ εἰρημένα κέντρα, ὥστε τὸν αὐτὸν ἔχειν λόγον ποτὶ τὰν μεταξὺ τῶν κέντρων, ὃν ἔχει τὸ βάρος τοῦ ἀφῃρημένου μεγέθεος ποτὶ τὸ τοῦ
15λοιποῦ βάρος, τὸ πέρας τᾶς ἀπολαφθείσας. [Omitted graphic marker] Ἔστω μεγέθεός τινος τοῦ ΑΒ κέντρον τοῦ βάρεος τὸ Γ, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ τὸ ΑΔ, οὗ κέντρον τοῦ βάρεος ἔστω τὸ Ε, ἐπιζευχθείσας δὲ τᾶς ΕΓ καὶ ἐκβληθείσας
ἀπολελάφθω ἁ ΓΖ ποτὶ τὰν ΓΕ λόγον ἔχουσα τὸν αὐτόν,88

2

.

89

ὃν ἔχει τὸ ΑΔ μέγεθος ποτὶ τὸ ΔΗ· δεικτέον ὅτι τοῦ ΔΗ μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ζ σαμεῖον. Μὴ γάρ, ἀλλ’, εἰ δυνατόν, ἔστω τὸ Θ σαμεῖον. Ἐπεὶ οὖν τοῦ μὲν ΑΔ μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ε,
5τοῦ δὲ ΔΗ τὸ Θ σαμεῖον, τοῦ ἐξ ἀμφοτέρων τῶν ΑΔ, ΔΗ μεγεθέων κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΘ τμαθείσας, ὥστε τὰ τμάματα αὐτᾶς ἀντιπεπονθέμεν κατὰ τὸν αὐτὸν λόγον τοῖς μεγέθεσιν· ὥστε οὐκ ἐσσεῖται τὸ Γ σαμεῖον κατὰ τὰν ἀνάλογον τομὰν τᾷ εἰρημένᾳ.
10Οὐκ ἄρα ἐστὶ τὸ Γ κέντρον τοῦ ἐκ τῶν ΑΔ, ΔΗ συγκειμένου μεγέθεος, τουτέστι τοῦ ΑΒ. Ἔστι δέ· ὑπέκειτο γάρ· οὐκ ἄρα ἐστὶ τὸ Θ κέντρον βάρεος τοῦ ΔΗ μεγέθεος.
θʹ. Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός
15ἐστιν ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν κατ’ ἐναντίον τοῦ παραλληλογράμμου πλευρᾶν. [Omitted graphic marker] Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, ἐπὶ δὲ τὰν διχοτομίαν τᾶν ΑΒ, ΓΔ ἁ ΕΖ· φαμὶ δὴ ὅτι τοῦ ΑΒΓΔ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐσσεῖται
20ἐπὶ τᾶς ΕΖ.89

2

.

90

Μὴ γάρ, ἀλλ’, εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἄχθω παρὰ τὰν ΑΒ ἁ ΘΙ. Τᾶς [δὲ] δὴ ΕΒ διχοτομουμένας αἰεὶ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΙΘ· καὶ διῃρήσθω ἑκατέρα τᾶν ΑΕ, ΕΒ εἰς τὰς τᾷ ΕΚ ἴσας, καὶ ἀπὸ τῶν
5κατὰ τὰς διαιρέσιας σαμείων ἄχθωσαν παρὰ τὰν ΕΖ· διαιρεθήσεται δὴ τὸ ὅλον παραλληλόγραμμον εἰς παραλ‐ ληλόγραμμα τὰ ἴσα καὶ ὁμοῖα τῷ ΚΖ. Τῶν οὖν παραλληλογράμμων τῶν ἴσων καὶ ὁμοίων τῷ ΚΖ ἐφαρ‐ μοζομένων ἐπ’ ἄλλαλα καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν
10ἐπ’ ἄλλαλα πεσοῦνται. Ἐσσοῦνται δὴ μεγέθεά τινα, παραλληλόγραμμα ἴσα τῷ ΚΖ, ἄρτια τῷ πλήθει, καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ’ εὐθείας κείμενα, καὶ τὰ μέσα ἴσα, καὶ πάντα τὰ ἐφ’ ἑκάτερα τῶν μέσων αὐτά τε ἴσα ἐντὶ καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι· τοῦ ἐκ
15πάντων αὐτῶν ἄρα συγκειμένου μεγέθεος τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος τῶν μέσων χωρίων. Οὐκ ἔστι δέ· τὸ γὰρ Θ ἐκτός ἐστι τῶν μέσων παραλληλογράμμων. Φανερὸν οὖν ὅτι ἐπὶ τᾶς ΕΖ εὐθείας τὸ κέντρον ἐστὶ τοῦ βάρεος
20τοῦ ΑΒΓΔ παραλληλογράμμου.
ιʹ. Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός
ἐστι τὸ σαμεῖον, καθ’ ὃ αἱ διάμετροι συμπίπτοντι. [Omitted graphic marker]90

2

.

91

Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ καὶ ἐν αὐτῷ ἁ ΕΖ δίχα τέμνουσα τὰς ΑΒ, ΓΔ, ἁ δὲ ΚΛ τὰς ΑΓ, ΒΔ· ἔστιν δὴ τοῦ ΑΒΓΔ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΖ· δέδεικται γὰρ τοῦτο· διὰ ταὐτὰ δὲ
5καὶ ἐπὶ τᾶς ΚΛ· τὸ Θ ἄρα σαμεῖον κέντρον τοῦ βάρεος. Κατὰ δὲ τὸ Θ αἱ διάμετροι τοῦ παραλληλογράμμου συμπίπτοντι· ὥστε δέδεικται τὸ προτεθέν.
8tΑΛΛΩΣ
9Ἔστιν δὲ καὶ ἄλλως τὸ αὐτὸ δεῖξαι. [Omitted graphic marker]
10 Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ἔστω ἁ ΔΒ. Τὰ ἄρα ΑΒΔ, ΒΔΓ τρίγωνα ἴσα ἐντὶ καὶ ὁμοῖα ἀλλάλοις· ὥστε ἐφαρμοζομένων ἐπ’ ἄλλαλα τῶν τριγώνων καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ’ ἄλλαλα πεσοῦνται. Ἔστω δὴ τοῦ ΑΒΔ τριγώνου κέντρον τοῦ
15βάρεος τὸ Ε σαμεῖον, καὶ τετμάσθω δίχα ἁ ΔΒ κατὰ τὸ Θ, καὶ ἐπεζεύχθω ἁ ΕΘ καὶ ἐκβεβλήσθω, καὶ ἀπολελάφθω ἁ ΖΘ ἴσα τᾷ ΘΕ. Ἐφαρμοζομένου δὴ τοῦ ΑΒΔ τριγώνου ἐπὶ τὸ ΒΔΓ τρίγωνον καὶ τιθεμένας τᾶς μὲν ΑΒ πλευρᾶς ἐπὶ τὰν ΔΓ, τᾶς δὲ ΑΔ ἐπὶ τὰν ΒΓ, ἐφαρμόξει καὶ ἁ ΘΕ
20εὐθεῖα ἐπὶ τὰν ΖΘ, καὶ τὸ Ε σαμεῖον ἐπὶ τὸ Ζ πεσεῖται.91

2

.

92

Ἀλλὰ καὶ ἐπὶ τὸ κέντρον τοῦ βάρεος τοῦ ΒΔΓ τριγώνου. Ἐπεὶ οὖν τοῦ μὲν ΑΒΔ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον, τοῦ δὲ ΔΒΓ τὸ Ζ, δῆλον ὡς τοῦ ἐξ ἀμφοτέρων τῶν τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός
5ἐστι τὸ μέσον τᾶς ΕΖ εὐθείας, ὅπερ ἐστὶ τὸ Θ σαμεῖον.
ιαʹ. Ἐὰν δύο τρίγωνα ὁμοῖα ἀλλάλοις ᾖ καὶ ἐν αὐτοῖς σαμεῖα ὁμοίως κείμενα ποτὶ τὰ τρίγωνα, καὶ τὸ ἓν σαμεῖον τοῦ ἐν ᾧ ἐστι τριγώνου κέντρον ᾖ τοῦ βάρεος, καὶ τὸ
10λοιπὸν σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ ἐν ᾧ ἐστι τριγώνου [ὁμοίως δὲ λέγομεν σαμεῖα κέεσθαι ποτὶ τὰ ὁμοῖα σχήματα, ἀφ’ ὧν αἱ ἐπὶ τὰς ἴσας γωνίας ἀγόμεναι εὐθεῖαι ἴσας ποιοῦσιν γωνίας πρὸς ταῖς ὁμολόγοις πλευραῖς]. [Omitted graphic marker]
15 Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ ΔΖ, οὕτως ἅ τε ΑΒ ποτὶ ΔΕ καὶ ἁ ΒΓ ποτὶ ΕΖ, καὶ ἐν τοῖς εἰρημένοις τριγώνοις σαμεῖα ὁμοίως κείμενα ἔστω τὰ Θ, Ν [πρὸς τὰ ΑΒΓ, ΔΕΖ τρίγωνα], καὶ ἔστω τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου· λέγω ὅτι καὶ τὸ
20Ν κέντρον βάρεός ἐστι τοῦ ΔΕΖ τριγώνου.92

2

.

93

Μὴ γάρ, ἀλλ’, εἰ δυνατόν, ἔστω τὸ Η κέντρον βάρεος τοῦ ΔΕΖ τριγώνου, καὶ ἐπεζεύχθωσαν αἱ ΘΑ, ΘΒ, ΘΓ, ΔΝ, ΕΝ, ΖΝ, ΔΗ, ΕΗ, ΖΗ. Ἐπεὶ οὖν ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ, καὶ κέντρα τῶν βαρέων ἐστὶ
5τὰ Θ, Η σαμεῖα, τῶν δὲ ὁμοίων σχημάτων τὰ κέντρα τῶν βαρέων ὁμοίως ἐντὶ κείμενα [ὥστε ἴσας ποιησοῦντι γωνίας ποτὶ ταῖς ὁμολόγοις πλευραῖς ἕκαστον ἑκάσταις], ἴσα ἄρα ἁ ὑπὸ ΗΔΕ γωνία τᾷ ὑπὸ ΘΑΒ. Ἀλλὰ ἁ ὑπὸ ΘΑΒ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΕΔΝ [διὰ τὸ ὁμοίως κεῖσθαι τὰ Θ,
10Ν σαμεῖα]· καὶ ἁ ὑπὸ ΕΔΝ γωνία ἄρα ἴσα ἐστὶ τᾷ ὑπὸ ΕΔΗ, ἁ μείζων τᾷ ἐλάσσονι· ὅπερ ἀδύνατον. Οὐκ ἄρα οὐκ ἔστι κέντρον τοῦ βάρεος τοῦ ΔΕΖ τριγώνου τὸ Ν σαμεῖον· ἔστιν ἄρα.
ιβʹ.
15 Εἴ κα δύο τρίγωνα ὁμοῖα ἔωντι, τοῦ δὲ ἑνὸς τριγώνου κέντρον ᾖ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐντι ἀπό τινος γωνίας ἐπὶ μέσαν τὰν βάσιν ἀγομένα, καὶ τοῦ λοιποῦ τριγώνου τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς ὁμοίως
ἀγομένας γραμμᾶς. [Omitted graphic marker]93

2

.

94

Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ ΔΖ, οὕτως ἅ τε ΑΒ ποτὶ ΔΕ καὶ ἁ ΒΓ ποτὶ ΖΕ, καὶ τμαθείσας τᾶς ΑΓ δίχα κατὰ τὸ Η ἐπεζεύχθω ἁ ΒΗ, καὶ ἔστω τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου ἐπὶ τᾶς
5ΒΗ τὸ Θ· λέγω ὅτι καὶ τοῦ ΕΔΖ τριγώνου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ὁμοίως ἀγομένας εὐθείας. Τετμάσθω ἁ ΔΖ δίχα κατὰ τὸ Μ, καὶ ἐπεζεύχθω ἁ ΕΜ, καὶ πεποιήσθω ὡς ἁ ΒΗ ποτὶ ΒΘ, οὕτως ἁ ΜΕ ποτὶ ΕΝ, καὶ ἐπεζεύχθωσαν αἱ ΑΘ, ΘΓ, ΔΝ, ΝΖ. Ἐπεί ἐστι τᾶς μὲν
10ΓΑ ἡμίσεια ἁ ΑΗ, τᾶς δὲ ΔΖ ἡμίσεια ἁ ΔΜ, ἔστιν ἄρα καὶ ὡς ἁ ΒΑ ποτὶ ΕΔ, οὕτως ἁ ΑΗ ποτὶ ΔΜ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· ἴσα τε ἄρα ἐστὶν ἁ ὑπὸ ΑΗΒ γωνία τᾷ ὑπὸ ΔΜΕ, καί ἐστιν ὡς ἁ ΑΗ ποτὶ ΔΜ, οὕτως ἁ ΒΗ ποτὶ ΕΜ. Ἔστιν δὲ καὶ ὡς ἁ ΒΗ ποτὶ ΒΘ,
15οὕτως ἁ ΜΕ ποτὶ ΕΝ· καὶ δι’ ἴσου ἄρα ἐστὶν ὡς ἁ ΑΒ ποτὶ ΔΕ, οὕτως ἁ ΒΘ ποτὶ ΕΝ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· εἰ δὲ τοῦτο, ἴσα ἐστὶν ἁ ὑπὸ ΒΑΘ γωνία τᾷ ὑπὸ ΕΔΝ· ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΑΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΝΔΖ γωνίᾳ. Διὰ τὰ αὐτὰ δὲ ἁ
20μὲν ὑπὸ ΒΓΘ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΕΖΝ, ἁ δὲ ὑπὸ ΘΓΗ τᾷ ὑπὸ ΝΖΜ ἴσα. Ἐδείχθη δὲ καὶ ἁ ὑπὸ ΑΒΘ τᾷ ὑπὸ ΔΕΜ ἴσα· ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΒΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΝΕΖ. Διὰ ταῦτα δὴ πάντα ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα [ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας γωνίας
25ποιεῖ]. Ἐπεὶ οὖν ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα, καί ἐστι τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου, καὶ τὸ Ν
ἄρα κέντρον βάρεος τοῦ ΔΕΖ.94

2

.

95

ιγʹ. Παντὸς τριγώνου τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐστιν ἐκ τᾶς γωνίας ἐπὶ μέσαν ἀγομένα τὰν βάσιν. [Omitted graphic marker]
5 Ἔστω τρίγωνον τὸ ΑΒΓ καὶ ἐν αὐτῷ ἁ ΑΔ ἐπὶ μέσαν τὰν ΒΓ βάσιν· δεικτέον ὅτι ἐπὶ τᾶς ΑΔ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ. Μὴ γάρ, ἀλλ’, εἰ δυνατόν, ἔστω τὸ Θ, καὶ δι’ αὐτοῦ παρὰ τὰν ΒΓ ἄχθω ἁ ΘΙ. Ἀεὶ δὴ δίχα τεμνομένας τᾶς
10ΔΓ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΘΙ· καὶ διῃρήσθω ἑκατέρα τᾶν ΒΔ, ΔΓ ἐς τὰς ἴσας, καὶ διὰ τᾶν τομᾶν παρὰ τὰν ΑΔ ἄχθωσαν, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΚ, ΛΜ· ἐσσοῦνται δὴ αὗται παρὰ τὰν ΒΓ. Τοῦ δὴ παραλληλογράμμου τοῦ μὲν ΜΝ τὸ κέντρον ἐστὶ τοῦ
15βάρεος ἐπὶ τᾶς ΥΣ, τοῦ δὲ ΚΞ τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΤΥ, τοῦ δὲ ΖΟ ἐπὶ τᾶς ΤΔ· τοῦ ἄρα ἐκ πάντων
συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ95

2

.

96

τᾶς ΣΔ εὐθείας. Ἔστω δὴ τὸ Ρ, καὶ ἐπεζεύχθω ἁ ΡΘ καὶ ἐκβεβλήσθω, καὶ ἄχθω παρὰ τὰν ΑΔ ἁ ΓΦ. Τὸ δὴ ΑΔΓ [τρίγωνον] ποτὶ πάντα τὰ τρίγωνα τὰ ἀπὸ τᾶν ΑΜ, ΜΚ, ΚΖ, ΖΓ ἀναγεγραμμένα ὁμοῖα τῷ ΑΔΓ τοῦτον ἔχει τὸν
5λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ, διὰ τὸ ἴσας εἶμεν τὰς ΑΜ, ΜΚ, ΖΓ, ΚΖ. Ἐπεὶ δὲ καὶ τὸ ΑΔΒ τρίγωνον ποτὶ πάντα τὰ ἀπὸ τᾶν ΑΛ, ΛΗ, ΗΕ, ΕΒ ἀναγεγραμμένα ὁμοῖα τρίγωνα τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΒΑ ποτὶ ΑΛ, τὸ ἄρα ΑΒΓ τρίγωνον ποτὶ πάντα τὰ εἰρημένα τρίγωνα τοῦτον
10ἔχει τὸν λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ. Ἀλλὰ ἁ ΓΑ ποτὶ ΑΜ μείζονα λόγον ἔχει ἤπερ ἁ ΦΡ ποτὶ ΡΘ· ὁ γὰρ τᾶς ΓΑ ποτὶ ΑΜ λόγος ὁ αὐτός ἐστι τῷ [ὅλας] τᾶς ΦΡ ποτὶ ΡΠ [διὰ τὸ ὁμοῖα εἶμεν τὰ τρίγωνα]· καὶ τὸ ΑΒΓ ἄρα τρίγωνον ποτὶ τὰ εἰρημένα μείζονα λόγον ἔχει ἤπερ ἁ
15ΦΡ ποτὶ ΡΘ· ὥστε καὶ διελόντι τὰ ΜΝ, ΚΞ, ΖΟ παραλλη‐ λόγραμμα ποτὶ τὰ καταλειπόμενα τρίγωνα μείζονα λόγον ἔχει ἤπερ ἁ ΦΘ ποτὶ ΘΡ. Γεγονέτω οὖν ἐν τῷ τῶν παραλ‐ ληλογράμμων ποτὶ τὰ τρίγωνα λόγῳ ἁ ΧΘ ποτὶ ΘΡ. Ἐπεὶ οὖν ἔστι τι μέγεθος τὸ ΑΒΓ, οὗ τὸ κέντρον τοῦ
20βάρεός ἐστι τὸ Θ, καὶ ἀφῄρηται ἀπ’ αὐτοῦ μέγεθος τὸ συγκείμενον ἐκ τῶν ΜΝ, ΚΞ, ΖΟ παραλληλογράμμων, καί ἐστιν τοῦ ἀφῃρημένου μεγέθεος κέντρον τοῦ βάρεος τὸ Ρ σαμεῖον, τοῦ ἄρα λοιποῦ μεγέθεος τοῦ συγκειμένου ἐκ τῶν περιλειπομένων τριγώνων κέντρον τοῦ βάρεός
25ἐστιν ἐπὶ τᾶς ΡΘ εὐθείας ἐκβληθείσας καὶ ἀπολαφθείσας ποτὶ τὰν ΘΡ τοῦτον ἐχούσας τὸν λόγον, ὃν ἔχει τὸ ἀφαιρεθὲν μέγεθος ποτὶ τὸ λοιπόν. Τὸ ἄρα Χ σαμεῖον
κέντρον ἐστὶ τοῦ βάρεος τοῦ συγκειμένου μεγέθεος ἐκ96

2

.

97

τῶν περιλειπομένων· ὅπερ ἀδύνατον· τᾶς γὰρ διὰ τοῦ Χ εὐθείας παρὰ τὰν ΑΔ ἀγομένας ἐν τῷ ἐπιπέδῳ ἐπὶ ταὐτὰ πάντα ἐντί [τουτέστιν ἐπὶ θάτερον μέρος]. Δῆλον οὖν τὸ προτεθέν.
5tΑΛΛΩΣ ΤΟ ΑΥΤΟ
6 Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ ΑΔ ἐπὶ μέσαν τὰν ΒΓ· λέγω ὅτι ἐπὶ τᾶς ΑΔ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ τριγώνου. [Omitted graphic marker] Μὴ γάρ, ἀλλ’, εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἐπεζεύχθωσαν
10αἵ τε ΑΘ, ΘΒ, ΘΓ καὶ αἱ ΕΔ, ΖΕ ἐπὶ μέσας τὰς ΒΑ, ΑΓ, καὶ παρὰ τὰν ΑΘ ἄχθωσαν αἱ ΕΚ, ΖΛ, καὶ ἐπεζεύχθωσαν αἱ ΚΛ, ΛΔ, ΔΚ, ΔΘ, ΜΝ. Ἐπεὶ ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΖΓ τριγώνῳ διὰ τὸ παράλληλον εἶμεν τὰν ΒΑ τᾷ ΖΔ, καί ἐστι τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος
15τὸ Θ σαμεῖον, καὶ τοῦ ΖΔΓ ἄρα τριγώνου κέντρον τοῦ βάρεός ἐστι τὸ Λ σαμεῖον· ὁμοίως γάρ ἐντι κείμενα τὰ Θ, Λ σαμεῖα ἐν ἑκατέρῳ τῶν τριγώνων [ἐπειδήπερ ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας ποιέοντι γωνίας· φανερὸν
γὰρ τοῦτο]. Διὰ τὰ αὐτὰ δὴ καὶ τοῦ ΕΒΔ κέντρον τοῦ97

2

.

98

βάρεός ἐστι τὸ Κ σαμεῖον· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν ΕΒΔ, ΖΔΓ τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστιν ἐπὶ μέσας τᾶς ΚΛ εὐθείας [ἐπειδήπερ ἴσα ἐντὶ τὰ ΕΒΔ, ΖΔΓ τρίγωνα]. Καί ἐστιν τᾶς ΚΛ μέσον
5τὸ Ν, ἐπεί ἐστιν ὡς ἁ ΒΕ ποτὶ ΕΑ, οὕτως ἁ ΒΚ ποτὶ ΘΚ, ὡς δὲ ἁ ΓΖ ποτὶ ΖΑ, οὕτως ἁ ΓΛ ποτὶ ΛΘ· εἰ δὲ τοῦτο, ἔστιν ἁ ΒΓ τᾷ ΚΛ παράλληλος. Καὶ ἐπέζευκται ἁ ΔΘ· ἔστιν ἄρα ὡς ἁ ΒΔ ποτὶ ΔΓ, οὕτως ἁ ΚΝ ποτὶ τὰν ΝΛ· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν εἰρημένων τριγώνων συγκει‐
10μένου μεγέθεος κέντρον ἐστὶ τὸ Ν. Ἔστιν δὲ καὶ τοῦ ΑΕΔΖ παραλληλογράμμου κέντρον τοῦ βάρεος τὸ Μ σαμεῖον· ὥστε τοῦ ἐκ πάντων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΜΝ εὐθείας. Ἔστιν δὲ καὶ τοῦ ΑΒΓ κέντρον τοῦ βάρεος τὸ Θ σαμεῖον· ἁ ΜΝ
15ἄρα ἐκβαλλομένα πορεύεται διὰ τοῦ Θ σαμείου· ὅπερ ἀδύνατον. Οὐκ ἄρα τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου οὐκ ἔστιν ἐπὶ τᾶς ΑΔ εὐθείας· ἔστιν ἄρα ἐπ’ αὐτᾶς.
ιδʹ
20 Παντὸς τριγώνου κέντρον ἐστὶ τοῦ βάρεος τὸ σαμεῖον, καθ’ ὃ συμπίπτοντι τοῦ τριγώνου αἱ ἐκ τᾶν γωνιᾶν ἐπὶ
μέσας τὰς πλευρὰς ἀγόμεναι εὐθεῖαι. [Omitted graphic marker]98

2

.

99

Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ μὲν ΑΔ ἐπὶ μέσαν τὰν ΒΓ, ἁ δὲ ΒΕ ἐπὶ μέσαν τὰν ΑΓ· ἐσσεῖται δὴ τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος ἐφ’ ἑκατέρας τᾶν ΑΔ, ΒΕ· δέδεικται γὰρ τοῦτο. Ὥστε τὸ Θ σαμεῖον κέντρον
5τοῦ βάρεός ἐστιν.
ιεʹ. Παντὸς τραπεζίου τὰς δύο πλευρὰς ἔχοντος παραλ‐ λήλους ἀλλάλαις τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν παραλ‐
10λήλων διαιρεθείσας, ὥστε τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὰν διχοτομίαν τᾶς ἐλάσσονος τᾶν παραλλήλων ποτὶ τὸ λοιπὸν τμᾶμα τοῦτον ἔχειν τὸν λόγον, ὃν ἔχει συναμ‐ φότερος ἁ ἴσα τᾷ διπλασίᾳ τᾶς μείζονος μετὰ τᾶς ἐλάσσονος ποτὶ τὰν διπλασίαν τᾶς ἐλάσσονος μετὰ τᾶς
15μείζονος τᾶν παραλλήλων. [Omitted graphic marker] Ἔστω τραπέζιον τὸ ΑΒΓΔ παραλλήλους ἔχον τὰς ΑΔ, ΒΓ, ἁ δὲ ΕΖ ἐπιζευγνυέτω τὰς διχοτομίας τᾶν ΑΔ,
ΒΓ. Ὅτι οὖν ἐπὶ τᾶς ΕΖ ἐστὶ τὸ κέντρον τοῦ τραπεζίου99

2

.

100

φανερόν. Ἐὰν γὰρ ἐκβάλῃς τὰς ΓΔΗ, ΖΕΗ, ΒΑΗ, δῆλον ὅτι ἐπὶ τὸ αὐτὸ σαμεῖον ἔρχονται, καὶ ἐσσεῖται τοῦ ΗΒΓ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΗΖ, καὶ ὁμοίως τοῦ ΑΗΔ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΗ·
5καὶ λοιποῦ ἄρα τοῦ ΑΒΓΔ τραπεζίου κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΖ. Ἐπιζευχθεῖσα δὲ ἁ ΒΔ διῃρήσθω εἰς τρία ἴσα κατὰ τὰ Κ, Θ σαμεῖα, καὶ δι’ αὐτῶν παρὰ τὰν ΒΓ ἄχθωσαν αἱ ΛΘΜ, ΝΚΤ, καὶ ἐπεζεύχθωσαν αἱ ΔΖ, ΒΕ, ΟΞ· ἐσσεῖται δὴ τοῦ μὲν ΔΒΓ τριγώνου κέντρον τοῦ
10βάρεος ἐπὶ τᾶς ΘΜ, ἐπειδήπερ τρίτον μέρος ἁ ΘΒ τᾶς ΒΔ [καὶ διὰ τοῦ Θ σαμείου παράλληλος τᾷ βάσει ἆκται ἁ ΜΘ]. Ἔστιν δὲ τὸ κέντρον τοῦ βάρεος τοῦ ΔΒΓ τριγώνου καὶ ἐπὶ τᾶς ΔΖ· ὥστε τὸ Ξ κέντρον τοῦ βάρεος τοῦ εἰρημένου τριγώνου. Διὰ ταὐτὰ δὲ καὶ τὸ Ο σαμεῖον
15κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΔ τριγώνου· τοῦ ἄρα ἐξ ἀμφοτέρων τῶν ΑΒΔ, ΒΔΓ τριγώνων συγκειμένου μεγέθεος, ὅπερ ἐστὶ τὸ τραπέζιον, κέντρον τοῦ βάρεος ἐπὶ τᾶς ΟΞ εὐθείας. Ἔστιν δὲ τοῦ εἰρημένου τραπεζίου κέντρον τοῦ βάρεος καὶ ἐπὶ τᾶς ΕΖ· ὥστε τοῦ ΑΒΓΔ
20τραπεζίου κέντρον ἐστὶ τοῦ βάρεος τὸ Π σαμεῖον. Ἔχοι δ’ ἂν τὸ ΒΔΓ τρίγωνον ποτὶ τὸ ΑΒΔ λόγον, ὃν ἁ ΟΠ ποτὶ ΠΞ. Ἀλλ’ ὡς τὸ ΒΔΓ τρίγωνον ποτὶ τὸ ΑΒΔ τρίγωνον, οὕτως ἐντὶ ἁ ΒΓ ποτὶ ΑΔ, ὡς δὲ ἁ ΟΠ ποτὶ ΠΞ, οὕτως ἁ ΡΠ ποτὶ ΠΣ· καὶ ὡς ἄρα ἁ ΒΓ ποτὶ ΑΔ, οὕτως ἁ ΡΠ ποτὶ
25ΠΣ· ὥστε καὶ ὡς δύο αἱ ΒΓ μετὰ τᾶς ΑΔ ποτὶ δύο τὰς ΑΔ μετὰ τᾶς ΒΓ, οὕτως δύο αἱ ΡΠ μετὰ τᾶς ΠΣ ποτὶ δύο τὰς ΠΣ μετὰ τᾶς ΠΡ. Ἀλλὰ δύο μὲν αἱ ΡΠ μετὰ τᾶς ΠΣ συναμφότερός ἐστιν ἁ ΣΡΠ, τουτέστιν ἁ ΠΕ, δύο δὲ αἱ ΠΣ μετὰ τᾶς ΠΡ συναμφότερός ἐστιν ἁ ΡΣΠ, τουτέστιν
30ἁ ΠΖ· δέδεικται ἄρα τὰ προτεθέντα.100

2

.

101

Ἰσορροπικῶν βʹ
αʹ. Εἴ κα δύο χωρία περιεχόμενα ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἃ δυνάμεθα παρὰ τὰν δοθεῖσαν
5εὐθεῖαν παραβαλεῖν, μὴ τὸ αὐτὸ κέντρον τοῦ βάρεος ἔχωντι, τοῦ ἐξ ἀμφοτέρων αὐτῶν συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος αὐτῶν διαιρέον οὕτως τὰν εἰρημέναν εὐθεῖαν, ὥστε τὰ τμάματα αὐτᾶς
10ἀντιπεπονθότως τὸν αὐτὸν λόγον ἔχειν τοῖς χωρίοις. [Omitted graphic marker] Ἔστω δύο χωρία τὰ ΑΒ, ΓΔ, οἷα εἴρηται, κέντρα δὲ αὐτῶν τοῦ βάρεος ἔστω τὰ Ε, Ζ σαμεῖα, καὶ ὃν ἔχει λόγον τὸ ΑΒ ποτὶ τὸ ΓΔ, τοῦτον ἐχέτω ἁ ΖΘ ποτὶ ΘΕ. Δεικτέον ὅτι τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, ΓΔ χωρίων συγκειμένου
15μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον.
Ἔστω δὴ τᾷ μὲν ΕΘ ἑκατέρα ἴσα τᾶν ΖΗ, ΖΚ, τᾷ δὲ101

2

.

102

ΖΘ, τουτέστι τᾷ ΗΕ, ἴσα ἁ ΕΛ· ἐσσεῖται ἄρα καὶ ἁ ΛΘ τᾷ ΚΘ ἴσα, καὶ ἔτι ὡς ἁ ΛΗ ποτὶ ΗΚ, οὕτως τὸ ΑΒ ποτὶ ΓΔ· διπλασία γὰρ ἑκατέρα ἑκατέρας. Παραβεβλήσθω δὴ παρὰ τὰν ΛΗ τὸ χωρίον τοῦ ΑΒ ἐφ’ ἑκάτερα τᾶς ΛΗ,
5ὥστε εἶμεν τὸ ΜΝ ἴσον τῷ ΑΒ· ἐσσεῖται δὴ τοῦ ΜΝ κέντρον τοῦ βάρεος τὸ Ε σαμεῖον. Συμπεπληρώσθω δὴ τὸ ΝΞ, ἕξει δὲ τὸ ΜΝ ποτὶ τὸ ΝΞ λόγον, ὃν ἁ ΛΗ ποτὶ ΗΚ. Ἔχει δὲ καὶ τὸ ΑΒ ποτὶ τὸ ΓΔ τὸν τᾶς ΛΗ ποτὶ ΗΚ λόγον· καὶ ὡς ἄρα τὸ ΑΒ ποτὶ ΓΔ, οὕτως τὸ ΜΝ ποτὶ
10ΝΞ. Καὶ ἐναλλάξ· ἴσον δὲ τὸ ΑΒ τῷ ΜΝ· ἴσον ἄρα καὶ τὸ ΓΔ τῷ ΝΞ, καὶ κέντρον ἐστὶν αὐτοῦ τοῦ βάρεος τὸ Ζ σαμεῖον. Καὶ ἐπεὶ ἴσα ἐστὶν ἁ ΛΘ τᾷ ΘΚ, καὶ ὅλα ἁ ΛΚ τὰς ἀπεναντίον πλευρὰς δίχα τέμνει, [τοῦ] ὅλου τοῦ ΠΜ κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον. Ἀλλὰ τὸ ΜΠ
15ἴσον τῷ ἐξ ἀμφοτέρων τῶν ΜΝ, ΝΞ· ὥστε καὶ τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, ΓΔ κέντρον ἐστὶ τοῦ βάρεος τὸ Θ σαμεῖον.
βʹ. Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου
20κώνου τομᾶς τρίγωνον ἐγγραφῇ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος ἴσον, καὶ πάλιν εἰς τὰ παραλειπόμενα τμάματα τρίγωνα ἐγγραφέωντι τὰς αὐτὰς βάσιας ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος ἴσον, καὶ ἀεὶ εἰς τὰ παραλει‐ πόμενα τμάματα τρίγωνα ἐγγραφέωντι τὸν αὐτὸν τρόπον,
25τὸ γενόμενον σχῆμα ἐν τῷ τμάματι γνωρίμως ἐγγράφεσθαι102

2

.

103

λεγέσθω. Φανερὸν δὲ ὅτι τοῦ οὕτως ἐγγραφέντος σχήματος αἱ τὰς γωνίας ἐπιζευγνύουσαι τάς τε ἔγγιστα ἀπὸ τᾶς κορυφᾶς τοῦ τμάματος καὶ τὰς ἑξῆς παρὰ τὰν βάσιν ἐσσοῦνται τοῦ τμάματος καὶ δίχα τμαθήσονται ὑπὸ τᾶς
5τοῦ τμάματος διαμέτρου καὶ τὰν διάμετρον τεμοῦντι εἰς τοὺς τῶν ἑξῆς περισσῶν ἀριθμῶν λόγους ἑνὸς λεγομένου ποτὶ τᾷ κορυφᾷ τοῦ τμάματος. Ταῦτα δὲ δεικτέον ἐν ταῖς τάξεσιν. Εἰ δέ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ
10ὀρθογωνίου κώνου τομᾶς εὐθύγραμμον γνωρίμως ἐγγραφῇ, τοῦ ἐγγραφέντος κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς τοῦ τμάματος διαμέτρου. [Omitted graphic marker]
Ἔστω τμᾶμα τὸ ΑΒΓ οἷον εἴρηται, καὶ ἐγγεγράφθω εἰς αὐτὸ εὐθύγραμμον γνωρίμως τὸ ΑΕΖΗΒΘΙΚΓ. Δεικτέον
15ὅτι τὸ κέντρον τοῦ βάρεος τοῦ εὐθυγράμμου ἐστὶν ἐπὶ τᾶς ΒΔ. Ἐπεὶ γὰρ τοῦ μὲν ΑΕΚΓ τραπεζίου τὸ κέντρον τοῦ
βάρεος ἐπὶ τᾶς ΛΔ ἐστί, τοῦ δὲ ΕΖΙΚ τραπεζίου τὸ κέντρον103

2

.

104

ἐπὶ τᾶς ΜΛ, τοῦ δὲ ΖΗΘΙ τραπεζίου τὸ κέντρον ἐπὶ τᾶς ΜΝ, ἔτι δὲ καὶ τοῦ ΗΒΘ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΒΝ, δῆλον ὅτι καὶ τοῦ ὅλου εὐθυγράμμου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΒΔ ἐστίν.
5
γʹ Εἴ κα δύο τμαμάτων ὁμοίων περιεχομένων ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς εἰς ἑκάτερον εὐθύγραμμον ἐγγραφῇ γνωρίμως, ἔχωντι δὲ τὰ ἐγγραφέντα εὐθύγραμμα τὰς πλευρὰς ἴσας τῷ πλήθει ἀλλάλαις, τῶν εὐθυγράμμων
10τὰ κέντρα τῶν βαρέων ὁμοίως τέμνοντι τὰς διαμέτρους τῶν τμαμάτων. [Omitted graphic marker] Ἔστω δύο τμάματα τὰ ΑΒΓ, ΞΟΠ, καὶ ἐγγεγράφθω
εἰς αὐτὰ εὐθύγραμμα γνωρίμως, καὶ τᾶν πασᾶν πλευρᾶν104

2

.

105

τὸν ἀριθμὸν ἐχόντων ἀλλάλοις ἴσον, διάμετροι δὲ ἔστωσαν τῶν τμαμάτων αἱ ΒΔ, ΟΡ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ, ΖΙ, ΗΘ καὶ αἱ ΣΤ, ΥΦ, ΧΨ. Ἐπεὶ οὖν ἅ τε ΒΔ διαιρεῖται ὑπὸ τᾶν παραλλήλων εἰς τοὺς τῶν ἑξῆς ἀριθμῶν περισσῶν
5λόγους καὶ ἁ ΡΟ, καὶ τῷ πλήθει τὰ τμάματα αὐτᾶν ἴσα ἐντί, δῆλον ὡς τά τε τμάματα τᾶν διαμέτρων ἐν τοῖς αὐτοῖς λόγοις ἐσσεῖται, καὶ αἱ παράλληλοι τοὺς αὐτοὺς λόγους ἑξοῦντι. Καὶ τῶν τραπεζίων τοῦ τε ΑΕΚΓ καὶ τοῦ ΞΣΤΠ τὰ κέντρα τῶν βαρέων ἐσσεῖται ἐπὶ τᾶν ΛΔ, ΩΡ
10εὐθειᾶν ὁμοίως κείμενα, ἐπεὶ τὸν αὐτὸν ἔχοντι λόγον αἱ ΑΓ, ΕΚ ταῖς ΞΠ, ΣΤ· πάλιν δὲ καὶ τῶν ΕΖΙΚ, ΣΥΦΤ τραπεζίων τὰ κέντρα τῶν βαρέων ἐσσοῦνται ὁμοίως διαιρέοντα τὰς ΛΜ, Ωϡ, καὶ τῶν ΖΗΘΙ, ΥΧΨΦ τραπεζίων τὰ κέντρα τῶν βαρέων ἐσσοῦνται ὁμοίως διαιρέοντα τὰς
15ΜΝ, ϙϡ, ἐσσεῖται δὲ καὶ τῶν ΗΒΘ, ΧΟΨ τριγώνων τὰ κέντρα τῶν βαρέων ἐπὶ τᾶν ΒΝ, Οϙ ὁμοίως κείμενα· ἔχοντι δὴ τὸν αὐτὸν λόγον τὰ τραπέζια καὶ τὰ τρίγωνα. Δῆλον οὖν ὅτι τοῦ ὅλου εὐθυγράμμου τοῦ ἐν τῷ ΑΒΓ τμάματι ἐγγεγραμμένου τὸ κέντρον τοῦ βάρεος ὁμοίως
20διαιρεῖ τὰν ΒΔ καὶ τοῦ ἐν τῷ ΞΟΠ τμάματι ἐγγεγραμμένου
τὸ κέντρον τοῦ βάρεος τὰν ΟΡ· ὅπερ ἔδει δεῖξαι.105

2

.

106

δʹ. Παντὸς τμάματος περιεχομένου ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς τοῦ τμάματος διαμέτρου.
5 Ἔστω τμᾶμα ὡς εἴρηται τὸ ΑΒΓ, οὗ διάμετρος ἔστω ἁ ΒΔ. Δεικτέον ὅτι τοῦ εἰρημένου τμάματος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΒΔ. [Omitted graphic marker] [Omitted graphic marker] Εἰ γὰρ μή, ἔστω τὸ Ε, καὶ δι’ αὐτοῦ ἄχθω παρὰ τὰν ΒΔ ἁ ΕΖ, καὶ ἐγγεγράφθω εἰς τὸ τμᾶμα τρίγωνον τὸ
10ΑΒΓ τὰν αὐτὰν βάσιν ἔχον καὶ ὕψος ἴσον, καὶ ὃν ἔχει λόγον ἁ ΓΖ ποτὶ ΖΔ, τοῦτον ἐχέτω τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ χωρίον· ἐγγεγράφθω δὲ καὶ εὐθύγραμμον εἰς τὸ τμᾶμα γνωρίμως, ὥστε τὰ περιλειπόμενα τμάματα ἐλάσσονα εἶμεν τοῦ Κ· τοῦ δὴ ἐγγραφομένου εὐθυγράμμου
15τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΒΔ. Ἔστω τὸ Θ, καὶ ἐπεζεύχθω ἁ ΘΕ καὶ ἐκβεβλήσθω, καὶ παρὰ τὰν ΒΔ ἄχθω ἁ ΓΛ· δῆλον δὴ ὅτι μείζονα λόγον ἔχει τὸ ἐγγεγραμμένον
εὐθύγραμμον ἐν τῷ τμάματι ποτὶ τὰ λειπόμενα τμάματα106

2

.

107

ἢ τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ. Ἀλλ’ ὡς τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ, οὕτως ἁ ΓΖ ποτὶ ΖΔ· καὶ τὸ ἐγγεγραμμένον ἄρα εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ ἁ ΓΖ ποτὶ ΖΔ, τουτέστιν ἁ ΛΕ ποτὶ ΕΘ.
5Ἐχέτω οὖν ἁ ΜΕ ποτὶ ΕΘ τὸν αὐτὸν λόγον τὸν τοῦ εὐθυγράμμου ποτὶ τὰ τμάματα. Ἐπεὶ οὖν τὸ μὲν Ε κέντρον τοῦ ὅλου τμάματος, τοῦ δὲ ἐγγεγραμμένου ἐν αὐτῷ εὐθυγράμμου τὸ Θ, δῆλον ὅτι λοιποῦ τοῦ συγκειμένου μεγέθεος ἐκ τῶν περιλειπομένων τμαμάτων τὸ κέντρον
10τοῦ βάρεός ἐστιν ἐκβληθείσας τᾶς ΘΕ καὶ ἀπολαφθείσας τινὸς εὐθείας, ἃ λόγον ἔχει ποτὶ τὰν ΘΕ ὃν τὸ ἐγγεγραμ‐ μένον εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα. Ὥστε εἴη κα τοῦ συγκειμένου μεγέθεος ἐκ τῶν περιλει‐ πομένων τμαμάτων κέντρον τοῦ βάρεος τὸ Μ σαμεῖον·
15ὅπερ ἄτοπον· τᾶς γὰρ διὰ τοῦ Μ παρὰ τὰν ΒΔ ἀγομένας ἐπὶ ταὐτὰ ἐσσοῦνται πάντα τὰ περιλειπόμενα τμάματα. Δῆλον οὖν ὅτι ἐπὶ τᾶς ΒΔ τὸ κέντρον ἐστὶ τοῦ βάρεος.
εʹ. Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ
20ὀρθογωνίου κώνου τομᾶς εὐθύγραμμον ἐγγραφῇ γνωρίμως, τοῦ ὅλου τμάματος τὸ κέντρον τοῦ βάρεος ἐγγύτερόν ἐστι τᾶς κορυφᾶς τοῦ τμάματος ἢ τὸ τοῦ ἐγγραφέντος
εὐθυγράμμου κέντρον.107

2

.

108

[Omitted graphic marker] Ἔστω τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, διάμετρος δὲ αὐτοῦ ἁ ΔΒ, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον πρῶτον γνωρίμως τὸ ΑΒΓ, καὶ τετμάσθω ἁ ΒΔ κατὰ τὸ Ε, ὥστε εἶμεν διπλασίαν τὰν ΒΕ τᾶς ΕΔ· ἔστιν οὖν τοῦ ΑΒΓ τριγώνου
5κέντρον τοῦ βάρεος τὸ Ε σαμεῖον. Τετμάσθω δὴ δίχα ἑκατέρα τᾶν ΑΒ, ΒΓ κατὰ τὰ Ζ, Η, καὶ διὰ τῶν Ζ, Η παρὰ τὰν ΒΔ ἄχθωσαν αἱ ΖΚ, ΛΗ· ἐσσεῖται ἄρα τοῦ μὲν ΑΚΒ τμάματος τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΖΚ, τοῦ ΒΓΛ τμάματος τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΗΛ. Ἔστω δὲ
10τὰ Θ, Ι, καὶ ἐπεζεύχθω ἁ ΘΙ. Καὶ ἐπεὶ παραλληλόγραμμόν ἐστι τὸ ΘΖΗΙ, καὶ ἴσα ἐστὶ τᾷ ΖΝ ἁ ΝΗ, ἔστιν ἄρα καὶ ἁ ΧΘ ἴσα τᾷ ΧΙ· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστιν ἐπὶ μέσας τᾶς ΘΙ [ἐπειδήπερ ἴσα ἐντὶ τμάματα],
15τουτέστιν τὸ Χ σαμεῖον. Ἐπεὶ δὲ τοῦ μὲν ΑΒΓ τριγώνου108

2

.

109

κέντρον τοῦ βάρεός ἐστι τὸ Ε σαμεῖον, τοῦ δὲ συγκειμένου ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τὸ Χ, δῆλον οὖν ὅτι ὅλου τοῦ τμάματος τοῦ ΑΒΓ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΧΕ, τουτέστι μεταξὺ τῶν Χ, Ε σαμείων· ὥστ’ εἴη κα
5ἐγγύτερον τᾶς τοῦ τμάματος κορυφᾶς τὸ κέντρον τοῦ ὅλου τμάματος ἢ τὸ τοῦ ἐγγραφομένου τριγώνου γνω‐ ρίμως. [Omitted graphic marker] Ἐγγεγράφθω πάλιν εἰς τὸ τμᾶμα πεντάγωνον εὐθύ‐ γραμμον γνωρίμως τὸ ΑΚΒΛΓ, καὶ ἔστω τοῦ μὲν ὅλου
10τμάματος διάμετρος ἁ ΒΔ, ἑκατέρου δὲ τῶν τμαμάτων ἑκατέρα τᾶν ΚΖ, ΛΗ διάμετρος [καὶ ἐπεὶ ἐν τῷ ΑΚΒ τμάματι ἐγγέγραπται εὐθύγραμμον γνωρίμως, τοῦ ὅλου τμάματος κέντρον τοῦ βάρεός ἐστιν ἐγγύτερον τᾶς κορυφᾶς ἢ τὸ τοῦ εὐθυγράμμου]. Ἔστω οὖν τοῦ μὲν
15τμάματος τὸ κέντρον τοῦ βάρεος τὸ Θ, τοῦ δὲ τριγώνου τὸ Ι, πάλιν δὲ ἔστω τοῦ μὲν ΒΛΓ τμάματος τὸ κέντρον τοῦ βάρεος τὸ Μ, τοῦ δὲ τριγώνου τὸ Ν· ἐσσεῖται δὴ τοῦ
μὲν ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου109

2

.

110

μεγέθεος κέντρον τοῦ βάρεος τὸ Χ, τοῦ δὲ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τριγώνων τὸ Τ. Πάλιν οὖν, ἐπεὶ τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεός ἐστι τὸ Ε, τοῦ δὲ ἐξ ἀμφο‐ τέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων τὸ Χ, δῆλον ὡς [τοῦ]
5ὅλου τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΧΕ τμαθείσας οὕτως ὥστε ὃν ἔχει λόγον τὸ ΑΒΓ τρίγωνον ποτὶ τὰ συναμφότερα τὰ ΑΚΒ, ΒΛΓ τμάματα, τὸν αὐτὸν λόγον ἔχειν τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὸ Χ ποτὶ τὸ ἔλασσον τμᾶμα. Τοῦ δὲ ΑΚΒΛΓ
10πενταγώνου κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΕΤ εὐθείας τμαθείσας οὕτως, ὥστε ὃν ἔχει λόγον τὸ ΑΒΓ τρίγωνον ποτὶ τὰ ΑΚΒ, ΒΛΓ τρίγωνα, τοῦτον ἔχειν τὸν λόγον τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὸ Τ ποτὶ τὸ λοιπόν. Ἐπεὶ οὖν μείζονα λόγον ἔχει τὸ ΑΒΓ τρίγωνον ποτὶ τὰ ΚΑΒ,
15ΛΒΓ τρίγωνα ἢ ποτὶ τὰ τμάματα, δῆλον οὖν ὅτι τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεος ἐγγύτερόν ἐστι τᾶς Β κορυφᾶς ἢ τὸ τοῦ ἐγγραφομένου εὐθυγράμμου. Καὶ ἐπὶ πάντων εὐθυγράμμων τῶν ἐγγραφομένων ἐς τὰ τμάματα γνωρίμως ὁ αὐτὸς λόγος.
20
ϛʹ. Τμάματος δοθέντος περιεχομένου ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς δυνατόν ἐστιν ἐς τὸ τμᾶμα εὐθύγραμμον γνωρίμως ἐγγράψαι, ὥστε τὰν μεταξὺ εὐθεῖαν τῶν κέντρων τοῦ βάρεος τοῦ τμάματος καὶ τοῦ
25ἐγγραφέντος εὐθυγράμμου ἐλάσσονα εἶμεν πάσας τᾶς
προτεθείσας εὐθείας.110

2

.

111

[Omitted graphic marker] Δεδόσθω τμᾶμα τὸ ΑΒΓ οἷον εἴρηται, οὗ κέντρον ἔστω τοῦ βάρεος τὸ Θ, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον γνωρίμως τὸ ΑΒΓ, καὶ ἔστω ἁ προτεθεῖσα εὐθεῖα ἁ Ζ, καὶ ὃν λόγον ἔχει ἁ ΒΘ ποτὶ Ζ, τοῦτον τὸν λόγον ἐχέτω
5τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Χ χωρίον. Ἐγγεγράφθω δὴ εἰς τὸ ΑΒΓ τμᾶμα εὐθύγραμμον γνωρίμως τὸ ΑΚΒΛΓ, ὥστε τὰ περιλειπόμενα τμάματα ἐλάσσονα εἶμεν τοῦ Χ, καὶ ἔστω τοῦ ἐγγραφέντος εὐθυγράμμου κέντρον τοῦ βάρεος τὸ Ε. Φαμὶ δὴ τὰν ΘΕ ἐλάσσονα εἶμεν τᾶς Ζ.
10 Εἰ γὰρ μή, ἤτοι ἴσα ἐστὶν ἢ μείζων. Ἐπεὶ δὲ τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ τὸ ΑΒΓ τρίγωνον ποτὶ Χ, τουτέστιν ἁ ΘΒ ποτὶ Ζ, ἔχει δὲ καὶ ἁ ΒΘ ποτὶ Ζ οὐκ ἐλάσσονα λόγον ἢ ὃν ἔχει ποτὶ ΘΕ, διὰ τὸ μὴ ἐλάσσονα εἶμεν τὰν ΘΕ
15τᾶς Ζ, πολλῷ ἄρα τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ ἁ ΒΘ ποτὶ ΘΕ· ὥστε, ἐὰν ποιῶμες ὡς τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα, οὕτως ἄλλαν τινα ποτὶ ΘΕ
[ἐπειδὴ τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεός ἐστι111

2

.

112

τὸ Θ, ἐκβληθείσας τᾶς ΕΘ καὶ ἀπολαφθείσας τινὸς εὐθείας ἐχούσας λόγον ποτὶ τὰν ΕΘ, ὃν τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα], ἐσσεῖται μείζων τᾶς ΘΒ. Ἐχέτω οὖν ἁ ΗΘ ποτὶ ΘΕ. Τὸ Η ἄρα
5κέντρον τοῦ βάρεος τοῦ συγκειμένου ἐκ τῶν περιλειπο‐ μένων τμαμάτων· ὅπερ ἀδύνατον· τᾶς γὰρ διὰ τοῦ Η ἀχθείσας παρὰ τὰν ΑΓ ἐπὶ τὰ αὐτά ἐστιν [τῷ τμήματι]. Δῆλον οὖν ὅτι ἁ ΘΕ ἐλάσσων ἐστὶ τᾶς Ζ· ἔδει δὲ τοῦτο δεῖξαι.
10
ζʹ. Δύο τμαμάτων ὁμοίων περιεχομένων ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὰ κέντρα τῶν βαρέων εἰς τὸν αὐτὸν λόγον τέμνοντι τὰς διαμέτρους. [Omitted graphic marker] Ἔστω δύο τμάματα οἷα εἴρηται τὰ ΑΒΓ, ΕΖΗ, ὧν
15διάμετροι αἱ ΒΔ, ΖΘ, καὶ ἔστω τοῦ μὲν ΑΒΓ τμάματος112

2

.

113

κέντρον τοῦ βάρεος τὸ Κ σαμεῖον, τοῦ δὲ ΕΖΗ τὸ Λ. Δεικτέον ὅτι εἰς τὸν αὐτὸν λόγον τέμνοντι τὰς διαμέτρους τὰ Κ, Λ. Εἰ γὰρ μή, ἔστω ὡς ἁ ΚΒ ποτὶ ΚΔ, οὕτως ἁ ΖΜ ποτὶ
5ΜΘ, καὶ ἐγγεγράφθω εἰς τὸ ΕΖΗ τμᾶμα εὐθύγραμμον γνωρίμως, ὥστε τὰν μεταξὺ τοῦ κέντρου τοῦ τμάματος καὶ τοῦ ἐγγραφομένου εὐθυγράμμου ἐλάσσονα εἶμεν τᾶς ΛΜ, καὶ ἔστω τοῦ ἐγγραφέντος εὐθυγράμμου κέντρον τοῦ βάρεος τὸ Ξ σαμεῖον, ἐγγεγράφθω δὲ εἰς τὸ ΑΒΓ
10τμᾶμα τῷ ἐν τῷ ΕΖΗ [ἐγγεγραμμένῳ εὐθυγράμμῳ] ὁμοῖον εὐθύγραμμον [τουτέστιν ὁμοίως γνωρίμως]· οὗ τὸ κέντρον τοῦ βάρεος τᾶς κορυφᾶς ἐγγύτερον ἤπερ τὸ τοῦ τμάματος· ὅπερ ἀδύνατον. Δῆλον οὖν ὅτι τὸν αὐτὸν λόγον ἔχει ἁ ΒΚ ποτὶ ΚΔ, ὃν ἁ ΖΛ ποτὶ ΛΘ.
15
ηʹ. Παντὸς τμάματος περιεχομένου ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τὸ κέντρον τοῦ βάρεος διαιρεῖ τὰν τοῦ τμάματος διάμετρον, ὥστε εἶμεν ἁμιόλιον τὸ μέρος αὐτᾶς τὸ ποτὶ τᾷ κορυφᾷ τοῦ τμάματος τοῦ ποτὶ τᾷ
20βάσει. [Omitted graphic marker]113

2

.

114

Ἔστω τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, διάμετρος δὲ αὐτοῦ ἔστω ἁ ΒΔ, κέντρον δὲ τοῦ βάρεος τὸ Θ σαμεῖον. Δεικτέον ὅτι ἁμιολία ἐστὶν ἁ ΒΘ τᾶς ΘΔ. Ἐγγεγράφθω ἐς τὸ ΑΒΓ τμᾶμα γνωρίμως τρίγωνον
5τὸ ΑΒΓ, οὗ κέντρον τοῦ βάρεος ἔστω τὸ Ε, καὶ τετμάσθω δίχα ἑκατέρα τᾶν ΑΒ, ΒΓ, καὶ ἄχθων αἱ ΚΖ, ΗΛ· διάμετροι ἄρα ἐντὶ τῶν ΑΚΒ, ΒΛΓ τμαμάτων. Ἔστω οὖν τοῦ μὲν ΑΚΒ τμάματος τὸ κέντρον τοῦ βάρεος τὸ Μ, τοῦ δὲ ΒΛΓ τὸ Ν, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΜΝ, ΚΛ· τοῦ ἄρα ἐξ
10ἀμφοτέρων τῶν τμαμάτων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστι τὸ Χ. Καὶ ἐπεί ἐστιν ὡς ἁ ΒΘ ποτὶ ΘΔ, οὕτως ἁ ΚΜ ποτὶ ΜΖ, καὶ συνθέντι καὶ ἐναλλὰξ ὡς ἁ ΒΔ ποτὶ ΚΖ, οὕτως ἁ ΔΘ ποτὶ ΜΖ, τετραπλασία δὲ ἁ ΒΔ τᾶς ΚΖ· τοῦτο γὰρ ἐπὶ τέλει δείκνυται, οὗ σαμεῖον
15ἡλιακόν symbol· τετραπλασίων ἄρα καὶ ἁ ΔΘ τᾶς ΜΖ· ὥστε καὶ λοιπὰ ἁ ΒΘ λοιπᾶς τᾶς ΚΜ, τουτέστι τᾶς ΣΧ, τετραπλασίων. Καὶ λοιπὰ ἄρα συναμφοτέρα ἁ ΒΣ, ΧΘ τριπλασίων τᾶς ΣΧ. Ἔστω τριπλασία ἁ ΒΣ τᾶς ΣΞ· καὶ ἁ ΧΘ ἄρα τᾶς ΞΧ ἐστὶ τριπλασία. Καὶ ἐπεὶ τετραπλασίων ἐστὶν ἁ ΒΔ
20τᾶς ΒΣ· καὶ γὰρ τοῦτο δείκνυται· ἁ δὲ ΒΣ τᾶς ΣΞ τριπλασίων, ἁ ΞΒ ἄρα τᾶς ΒΔ τρίτον μέρος ἐστίν. Ἔστιν δὲ καὶ ἁ ΕΔ τᾶς ΔΒ τρίτον μέρος, ἐπειδήπερ κέντρον
τοῦ βάρεος τοῦ ΑΒΓ τριγώνου ἐστὶ τὸ Ε· καὶ λοιπὰ ἄρα114

2

.

115

ἁ ΞΕ τρίτον μέρος τᾶς ΒΔ. Καὶ ἐπεὶ τοῦ μὲν ὅλου τμάματος κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον, τοῦ δὲ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεος τὸ Χ, τοῦ δὲ ΑΒΓ τριγώνου τὸ Ε, ἐσσεῖται
5ὡς τὸ ΑΒΓ τρίγωνον ποτὶ τὰ καταλειπόμενα τμάματα, οὕτως ἁ ΧΘ ποτὶ ΘΕ. Τριπλάσιον δὲ τὸ ΑΒΓ τρίγωνον τῶν τμαμάτων [ἐπειδήπερ τὸ ὅλον τμᾶμα ἐπίτριτόν ἐστι τοῦ ΑΒΓ τριγώνου]· τριπλασία ἄρα καὶ ἁ ΧΘ τᾶς ΘΕ. Ἐδείχθη δὲ ἁ ΧΘ τριπλασία καὶ τᾶς ΧΞ· πενταπλασία
10ἄρα ἐστὶν ἁ ΞΕ τᾶς ΕΘ, τουτέστιν ἁ ΔΕ τᾶς ΕΘ· ἴσα γάρ ἐστιν αὐτᾷ· ὥστε ἑξαπλασία ἐστὶν ἁ ΔΘ τᾶς ΘΕ. Καί ἐντι τᾶς ΔΕ τριπλασία ἁ ΒΔ· ἁμιολία ἄρα ἐντὶ ἁ ΒΘ τᾶς ΘΔ· ὅπερ ἔδει δεῖξαι.
θʹ.
15 Εἴ κα τέσσαρες γραμμαὶ ἀνάλογον ἔωντι ἐν τᾷ συνεχεῖ ἀναλογίᾳ, καὶ ὃν ἔχει λόγον ἁ ἐλαχίστα ποτὶ τὰν ὑπεροχάν, ᾇ ὑπερέχει ἁ μεγίστα τᾶς ἐλαχίστας, τοῦτον ἔχουσά τις λαφθῇ ποτὶ τὰ τρία πεμπταμόρια τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει ἁ μεγίστα τᾶν ἀνάλογον τᾶς τρίτας, ὃν δὲ
20ἔχει λόγον ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς μεγίστας τᾶν ἀνάλογον καὶ τᾷ τετραπλασίᾳ τᾶς δευτέρας καὶ τᾷ ἑξαπλασίᾳ τᾶς τρίτας καὶ τᾷ τριπλασίᾳ τᾶς τετάρτας ποτὶ τὰν ἴσαν τᾷ τε πενταπλασίᾳ τᾶς μεγίστας καὶ τᾷ δεκαπλασίᾳ τᾶς δευτέρας καὶ τᾷ δεκαπλασίᾳ τᾶς τρίτας καὶ τᾷ
25πενταπλασίᾳ τᾶς τετάρτας, τοῦτον ἔχουσά τις λαφθῇ
ποτὶ τὰν ὑπεροχάν, ᾇ ὑπερέχει ἁ μεγίστα τᾶν ἀνάλογον115

2

.

116

τᾶς τρίτας, συναμφότεραι αἱ λαφθεῖσαι ἐσσοῦνται δύο πεμπταμόρια τᾶς μεγίστας. Ἔστωσαν τέσσαρες γραμμαὶ ἀνάλογον αἱ ΑΒ, ΒΓ, ΒΔ, ΒΕ, καὶ ὃν μὲν ἔχει λόγον ἁ ΒΕ ποτὶ ΕΑ, τοῦτον
5ἐχέτω ἁ ΖΗ ποτὶ τὰ τρία πέμπτα τᾶς ΑΔ, ὃν δὲ λόγον ἔχει ἁ ἴσα τᾷ διπλασίᾳ τᾶς ΑΒ καὶ τετραπλασίᾳ τᾶς ΒΓ καὶ ἑξαπλασίᾳ τᾶς ΒΔ καὶ τριπλασίᾳ τᾶς ΒΕ ποτὶ τὰν ἴσαν τᾷ πεντα‐ πλασίᾳ τᾶς ΑΒ καὶ δεκαπλασίᾳ τᾶς ΓΒ καὶ
10δεκαπλασίᾳ τᾶς ΒΔ καὶ πενταπλασίᾳ τᾶς ΒΕ, τοῦτον ἐχέτω τὸν λόγον ἁ ΗΘ ποτὶ τὰν ΑΔ. Δεικτέον ὅτι ἁ ΖΘ δύο πενταμόριά ἐντι τᾶς ΑΒ. Ἐπεὶ γὰρ ἀνάλογόν ἐντι αἱ ΑΒ, ΒΓ, ΒΔ, ΒΕ, καὶ αἱ ΑΓ, ΓΔ, ΔΕ ἐν τῷ αὐτῷ λόγῳ ἐντί,
15καὶ συναμφότερος ἁ ΑΒ, ΒΓ ποτὶ τὰν ΒΔ, του‐ τέστιν ἁ διπλασία συναμφοτέρου τᾶς ΑΒ, ΒΓ ποτὶ τὰν διπλασίαν τᾶς ΒΔ, ἔχει τὸν αὐτὸν λόγον, ὃν ἁ ΑΔ ποτὶ τὰν ΔΕ, καὶ συναμφότερος ἁ ΔΒ, ΒΓ ποτὶ τὰν ΕΒ, καὶ πάντα ποτὶ πάντα· τὸν αὐτὸν
20ἄρα λόγον ἔχει ἁ ΑΔ ποτὶ τὰν ΔΕ, ὃν ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τᾷ τριπλασίᾳ τᾶς ΓΒ καὶ τᾷ ΔΒ ποτὶ τὰν ἴσαν τᾷ τε διπλασίᾳ τᾶς ΒΔ καὶ τᾷ ΒΕ, ὃν δὲ λόγον ἔχει ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τᾷ τετραπλασίᾳ τᾶς ΒΓ καὶ τᾷ τετραπλασίᾳ τᾶς ΒΔ καὶ τᾷ διπλασίᾳ τᾶς ΒΕ
25ποτὶ τὰν ἴσαν τᾷ τε διπλασίᾳ τᾶς ΔΒ καὶ τᾷ ΕΒ, τοῦτον ἕξει ἁ ΔΑ ποτὶ ἐλάσσονα τᾶς ΔΕ. Ἐχέτω οὖν ποτὶ ΔΟ.
Καὶ ἀμφότεραι δὲ ποτὶ τὰς πρώτας τὸν αὐτὸν ἑξοῦντι116

2

.

117

λόγον· ἕξει οὖν ἁ ΟΑ ποτὶ ΑΔ τὸν αὐτὸν λόγον, ὃν ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τετραπλασίᾳ τᾶς ΓΒ καὶ ἑξαπλασίᾳ τᾶς ΒΔ καὶ τριπλασίᾳ τᾶς ΒΕ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρας τᾶς
5ΑΒ, ΕΒ καὶ τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἔχει δὲ καὶ ἁ ΑΔ ποτὶ ΗΘ τὸν αὐτὸν λόγον, ὃν ἁ πεντα‐ πλασία συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΒ καὶ τᾶς τετραπλασίας τᾶς ΓΒ
10καὶ τᾶς τριπλασίας τᾶς ΕΒ καὶ ἑξαπλασίας τᾶς ΒΔ· ἀνομοίως δὲ τῶν λόγων τεταγμένων, τουτέστιν ἐν τετα‐ ραγμένᾳ ἀναλογίᾳ, δι’ ἴσου τὸν αὐτὸν ἔχει λόγον ἁ ΟΑ ποτὶ ΗΘ, ὃν ἁ πενταπλασία συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας τᾶν ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν
15ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἀλλ’ ἁ συγκειμένα ἔκ τε τᾶς πενταπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρου
20τᾶς ΑΒ, ΒΕ καὶ τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ λόγον ἔχει, ὃν πέντε ποτὶ δύο· καὶ ἁ ΑΟ ἄρα ποτὶ ΗΘ λόγον ἔχει, ὃν πέντε ποτὶ δύο. Πάλιν, ἐπεὶ ἁ ΟΔ ποτὶ ΔΑ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΕΒ μετὰ τᾶς διπλασίας τᾶς ΒΔ ποτὶ τὰν ἴσαν τᾷ συγκειμένᾳ ἔκ τε τᾶς διπλασίας
25συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ, ἔστιν δὲ καὶ ὡς ἁ ΑΔ ποτὶ ΔΕ,
οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΑΒ καὶ117

2

.

118

τριπλασίας τᾶς ΓΒ καὶ τᾶς ΒΔ ποτὶ τὰν ἴσαν τᾷ τε ΕΒ καὶ τᾷ διπλασίᾳ τᾶς ΒΔ, ἀνομοίως οὖν τῶν λόγων τεταγμένων, τουτέστιν τεταραγμένας ἐούσας τᾶς ἀνα‐ λογίας, δι’ ἴσου ὡς ἁ ΟΔ ποτὶ ΔΕ, οὕτως ἁ διπλασία
5τᾶς ΑΒ μετὰ τᾶς τριπλασίας τᾶς ΒΓ καὶ ἁ ΒΔ ποτὶ τὰν συγκειμέναν ἐκ τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τᾶς τετραπλασίας τᾶν ΓΒ, ΒΔ· ὥστε καὶ ὡς ἁ ΟΕ ποτὶ ΕΔ ἐστίν, οὕτως ἁ ΓΒ μετὰ τᾶς τριπλασίας τᾶς ΒΔ καὶ διπλασίας τᾶς ΕΒ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς
10ΑΒ, ΒΕ καὶ τετραπλασίαν συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἔστιν δὲ καὶ ὡς ἁ ΔΕ ποτὶ ΕΒ, οὕτως ἅ τε ΑΓ ποτὶ ΓΒ, ἐπεὶ καὶ κατὰ σύνθεσιν, καὶ ἁ τριπλασία τᾶς ΓΔ ποτὶ τὰν τριπλασίαν τᾶς ΔΒ καὶ ἁ διπλασία τᾶς ΔΕ ποτὶ τὰν διπλασίαν τᾶς ΕΒ· ὥστε καὶ ἁ συγκειμένα ἔκ τε τᾶς
15ΑΓ καὶ τριπλασίας τᾶς ΓΔ καὶ διπλασίας τᾶς ΔΕ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς ΓΒ καὶ τριπλασίας τᾶς ΔΒ καὶ διπλασίας τᾶς ΕΒ. Ἀνομοίως οὖν πάλιν τῶν λόγων τεταγμένων, τουτέστιν ἐν τεταραγμένᾳ ἀναλογίᾳ, δι’ ἴσου τὸν αὐτὸν ἕξει λόγον ἁ ΕΟ ποτὶ ΕΒ, ὃν ἁ ΑΓ μετὰ τᾶς
20τριπλασίας τᾶς ΓΔ καὶ διπλασίας τᾶς ΔΕ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς τετρα‐ πλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ· ὅλα οὖν ἁ ΟΒ ποτὶ ΒΕ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ἴσα τᾷ τε τριπλασίᾳ τᾶς ΑΒ μετὰ τᾶς ἑξαπλασίας τᾶς ΓΒ καὶ τᾷ τριπλασίᾳ τᾶς
25ΒΔ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ
τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Καὶ ἐπεὶ118

2

.

119

αἵ τε ΕΔ, ΔΓ, ΓΑ ἐν τῷ αὐτῷ λόγῳ ἐντὶ καὶ συναμφότερος ἑκάστα τᾶν ΕΒ, ΒΔ, ΔΒ, ΒΓ, ΓΒ, ΒΑ, ἐσσεῖται καὶ ὡς ἁ ΕΔ ποτὶ ΔΑ, οὕτως συναμφότερος ἁ ΕΒ, ΒΔ ποτὶ συναμφότερον τὰν ΔΒ, ΒΓ μετὰ τᾶς συναμφοτέρου τᾶς
5ΓΒ, ΒΑ. Καὶ συνθέντι ἄρα ἐστὶν ὡς ἁ ΑΕ ποτὶ ΑΔ, οὕτως συναμφότερος ἁ ΕΒ, ΒΔ μετὰ συναμφοτέρου τᾶς ΑΒ, ΒΓ καὶ συναμφοτέρου τᾶς ΓΒΔ, ὅ ἐστι συναμφότερος ἁ ΕΒΑ μετὰ τᾶς διπλασίας συναμφοτέρου τᾶς ΔΒΓ ποτὶ συναμφότερον τὰν ΒΔ, ΒΑ μετὰ τᾶς διπλασίας τᾶς ΒΓ·
10ὥστε καὶ ἁ διπλασία ποτὶ τὰν διπλασίαν τὸν αὐτὸν ἕξει λόγον, τουτέστιν ὡς ἁ ΕΑ ποτὶ ΑΔ, οὕτως ἁ διπλασία συναμφοτέρου τᾶς ΕΒΑ μετὰ τᾶς τετραπλασίας συναμφο‐ τέρου τᾶς ΓΒΔ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς τετραπλασίας τᾶς ΓΒ· ὥστε καὶ ὡς ἁ
15ΕΑ ποτὶ τὰ τρία πέμπτα τᾶς ΑΔ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΕ καὶ τετρα‐ πλασίας συναμφοτέρου τᾶς ΓΒΔ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας τᾶς ΓΒ. Ἀλλ’ ὡς ἁ ΕΑ ποτὶ
20τὰ τρία πέμπτα τᾶς ΑΔ, οὕτως ἐστὶν ἁ ΕΒ ποτὶ ΖΗ· καὶ ὡς ἄρα ἁ ΕΒ ποτὶ ΖΗ, οὕτως ἁ διπλασία συναμφοτέρου τᾶς ΑΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΔΒΓ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς τετραπλασίας
25τᾶς ΓΒ. Ἐδείχθη δὲ καὶ ὡς ἁ ΟΒ ποτὶ ΕΒ, οὕτως ἁ τριπλασία συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς ἑξαπλασίας τᾶς ΓΒ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒΕ καὶ τετρα‐
πλασίαν συναμφοτέρου τᾶς ΓΒΔ. Καὶ δι’ ἴσου ἄρα119

2

.

120

ἐστὶν ὡς ἁ ΟΒ ποτὶ ΖΗ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς τριπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ ἑξαπλασίας τᾶς ΓΒ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας
5τᾶς ΓΒ. Ἀλλὰ ἁ συγκειμένα ἔκ τε τᾶς τριπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ ἑξαπλασίας τᾶς ΓΒ ποτὶ μὲν τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας τᾶς ΓΒ λόγον ἔχει, ὃν τρία ποτὶ δύο, ποτὶ δὲ τὰ τρία πέμπτα τᾶς αὐτᾶς λόγον ἔχει, ὃν
10πέντε ποτὶ δύο· ἐδείχθη δὲ καὶ ἁ ΑΟ ποτὶ ΗΘ λόγον ἔχουσα, ὃν πέντε ποτὶ δύο· καὶ ὅλα ἄρα ἁ ΒΑ ποτὶ ὅλαν τὰν ΖΘ λόγον ἔχει, ὃν πέντε ποτὶ δύο. Εἰ δὲ τοῦτο, δύο πεμπταμόριά ἐντι ἁ ΖΘ τᾶς ΑΒ· ὅπερ ἔδει δεῖξαι.
ιʹ.
15 Παντὸς τόμου ἀπὸ ὀρθογωνίου κώνου τομᾶς ἀφαιρου‐ μένου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς εὐθείας ἐστίν, ἃ διάμετρός ἐστι τοῦ τόμου, τόνδε τὸν τρόπον κείμενον· διαιρεθείσας τᾶς εὐθείας εἰς ἴσα πέντε ἐπὶ μέσου πεμπτα‐ μορίου, ὥστε τὸ τμᾶμα αὐτοῦ τὸ ἐγγύτερον τᾶς ἐλάσσονος
20βάσιος τοῦ τόμου ποτὶ τὸ λοιπὸν τμᾶμα τὸν αὐτὸν ἔχειν λόγον, ὃν ἔχει τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ τετράγωνον τὸ ἀπὸ τᾶς μείζονος τᾶν βάσιων τοῦ τόμου, ὕψος δὲ τὰν ἴσαν συναμφοτέρᾳ τᾷ τε διπλασίᾳ τᾶς ἐλάσσονος τᾶν βάσιων καὶ τᾷ μείζονι, ποτὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον
25τὸ τετράγωνον τὸ ἀπὸ τᾶς ἐλάσσονος τᾶν βάσιων τοῦ120

2

.

121

τόμου, ὕψος δὲ τὰν ἴσαν ἀμφοτέρᾳ τᾷ τε διπλασίᾳ τᾶς μείζονος καὶ τᾷ ἐλάσσονι αὐτᾶν. [Omitted graphic marker] Ἔστωσαν ἐν ὀρθογωνίου κώνου τομᾷ δύο εὐθεῖαι αἱ ΑΓ, ΔΕ, διάμετρος δὲ ἔστω τοῦ ΑΒΓ τμάματος ἁ ΒΖ·
5φανερὸν δὴ ὅτι καὶ τοῦ ΑΔΕΓ τόμου διάμετρός ἐστιν ἁ ΗΖ [καὶ αἱ μὲν ΑΓ, ΔΕ παράλληλοί ἐντι τᾷ κατὰ τὸ Β ἐφαπτομένᾳ τᾶς τομᾶς]· καὶ τᾶς ΗΖ εὐθείας διαιρεθείσας εἰς πέντε ἴσα μέσον ἔστω πεμπταμόριον ἁ ΘΚ, ἁ δὲ ΘΙ ποτὶ τὰν ΙΚ τὸν αὐτὸν ἐχέτω λόγον, ὃν ἔχει τὸ στερεὸν
10τὸ βάσιν μὲν ἔχον τὸ ἀπὸ τᾶς ΑΖ τετράγωνον, ὕψος δὲ τὰν ἴσαν ἀμφοτέραις τᾷ τε διπλασίᾳ τᾶς ΔΗ καὶ τᾷ ΑΖ, ποτὶ τὸ στερεὸν τὸ βάσιν ἔχον τὸ ἀπὸ τᾶς ΔΗ τετρά‐ γωνον, ὕψος δὲ τὰν ἴσαν ἀμφοτέραις τᾷ διπλασίᾳ τᾶς ΑΖ καὶ τᾷ ΔΗ. Δεικτέον ὅτι τοῦ ΑΔΕΓ τόμου κέντρον ἐστὶ
15τοῦ βάρεος τὸ Ι σαμεῖον.
Ἔστω δὴ τᾷ μὲν ΖΒ ἴσα ἁ ΜΝ, τᾷ δὲ ΗΒ ἴσα ἁ ΝΟ, καὶ121

2

.

122

λελάφθω τᾶν μὲν ΜΝΟ μέσα ἀνάλογον ἁ ΝΞ, τετάρτα δὲ ἀνάλογον ἁ ΤΝ, καὶ ὡς ἁ ΤΜ ποτὶ ΤΝ, οὕτως ἁ ΖΘ ποτί τινα ἀπὸ τοῦ Ι, ὅπου ἂν ἔρχηται τὸ ἕτερον σαμεῖον· οὐδὲν γὰρ διαφέρει εἴτε καὶ μεταξὺ τῶν Ζ, Η εἴτε καὶ
5μεταξὺ τῶν Η, Β· τὰν ΙΡ. Καὶ ἐπεὶ ἐν ὀρθογωνίου κώνου τομᾷ διάμετρός ἐστι τοῦ τμάματος ἁ ΖΒ, ἁ ΒΖ ἤτοι ἀρχικά ἐστι τᾶς τομᾶς ἢ παρὰ τὰν διάμετρον ἆκται, αἱ δὲ ΑΖ, ΔΗ εἰς αὐτὰν τεταγμένως ἐντὶ καταγμέναι, ἐπειδὴ παράλληλοί ἐντι τᾷ ἐπὶ τοῦ Β τᾶς τομᾶς ἐφαπτομένᾳ.
10Εἰ δὲ τοῦτο, ἔστιν ὡς ἁ ΑΖ ποτὶ ΔΗ δυνάμει, οὕτως ἁ ΖΒ ποτὶ ΒΗ μάκει, τουτέστιν ἁ ΜΝ ποτὶ ΝΟ. Ὡς δὲ ἁ ΜΝ ποτὶ ΝΟ μάκει, οὕτως ἁ ΜΝ ποτὶ ΝΞ δυνάμει· καὶ ὡς ἄρα ἁ ΑΖ ποτὶ ΔΗ δυνάμει, οὕτως ἁ ΜΝ ποτὶ ΝΞ δυνάμει· ὥστε καὶ μάκει ἐν τῷ αὐτῷ λόγῳ. Καὶ ὡς ἄρα
15ὁ ἀπὸ ΑΖ κύβος ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως ὁ ἀπὸ ΜΝ κύβος ποτὶ τὸν ἀπὸ ΝΞ κύβον. Ἀλλ’ ὡς μὲν ὁ ἀπὸ ΑΖ κύβος ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως τὸ ΑΒΓ τμᾶμα ποτὶ τὸ ΔΒΕ τμᾶμα, ὡς δὲ ὁ ἀπὸ ΜΝ κύβος ποτὶ τὸν ἀπὸ ΝΞ κύβον, οὕτως ἁ ΜΝ ποτὶ ΝΤ· ὥστε καὶ διελόντι ἐστὶν
20ὡς ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ τμᾶμα, οὕτως ἁ ΜΤ ποτὶ ΝΤ, τουτέστι τὰ γ εʹ τᾶς ΗΖ ποτὶ ΙΡ. Καὶ ἐπεὶ τὸ στερεὸν
τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν122

2

.

123

συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, ποτὶ τὸν ἀπὸ ΑΖ κύβον λόγον ἔχει, ὃν ἁ διπλασία τᾶς ΔΗ μετὰ τᾶς ΑΖ ποτὶ ΖΑ, ὥστε καὶ ὃν ἁ διπλασία τᾶς ΝΞ μετὰ τᾶς ΝΜ ποτὶ ΝΜ, ἔστι δὲ καὶ ὡς ὁ ἀπὸ ΑΖ κύβος
5ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως ἁ ΜΝ ποτὶ ΝΤ, ὡς δὲ ὁ ἀπὸ ΔΗ κύβος ποτὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ μετὰ τᾶς ΔΗ, οὕτως ἁ ΔΗ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ,
10ὥστε καὶ ἁ ΤΝ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΟΝ καὶ τᾶς ΤΝ, γέγονεν οὖν τέσσαρα μεγέθεα, τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, καὶ ὁ ἀπὸ ΑΖ κύβος καὶ ὁ ἀπὸ ΔΗ κύβος καὶ τὸ
15στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ, τέτταρσι μεγέθεσιν ἀνάλογον σύνδυο λαμβανομένοις, τᾷ τε συγκειμένᾳ ἔκ τε τᾶς διπλασίας τᾶς ΝΞ καὶ τᾶς ΝΜ καὶ ἑτέρῳ μεγέθει τᾷ ΜΝ καὶ ἄλλῳ ἑξῆς τᾷ ΝΤ καὶ τελευ‐
20ταῖον τᾷ συγκειμένᾳ ἔκ τε τᾶς διπλασίας τᾶς ΝΟ καὶ τᾶς ΝΤ· δι’ ἴσου ἄρα γενήσεται ὡς τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, ποτὶ τὸ στερεὸν
τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν123

2

.

124

συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΝΞ καὶ τᾶς ΜΝ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΝΟ καὶ τᾶς ΝΤ. Ἀλλ’ ὡς τὸ εἰρημένον στερεὸν ποτὶ
5τὸ εἰρημένον στερεόν, οὕτως ἁ ΘΙ ποτὶ ΙΚ· καὶ ὡς ἄρα ἁ ΘΙ ποτὶ ΙΚ, οὕτως ἁ συγκειμένα ποτὶ τὰν συγκειμέναν· Ὥστε καὶ συνθέντι καὶ τῶν ἁγουμένων τὰ πενταπλάσια· ἔστιν ἄρα ὡς ἁ ΖΗ ποτὶ ΙΚ, οὕτως ἁ πενταπλασία συναμ‐ φοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς
10ΝΞ, ΝΟ ποτὶ τὰν διπλασίαν τᾶς ΟΝ καὶ τὰν ΝΤ. Καὶ ὡς ἁ ΖΗ ποτὶ ΖΚ ἐοῦσαν αὐτᾶς δύο πέμπτα, οὕτως ἁ πεντα‐ πλασία συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς ΞΝΟ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΜΝΤ καὶ τετραπλασίαν συναμφοτέρου τᾶς ΞΝΟ·
15ἐσσεῖται οὖν ὡς ἁ ΖΗ ποτὶ ΖΙ, οὕτως ἁ πενταπλασία συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς ΞΝΟ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΜΝ καὶ τετραπλασίας τᾶς ΝΞ καὶ ἑξαπλασίας τᾶς ΟΝ καὶ τριπλασίας τᾶς ΝΤ. Ἐπεὶ οὖν τέσσαρες εὐθεῖαι ἑξῆς
20ἀνάλογον αἱ ΜΝ, ΝΞ, ΟΝ, ΝΤ, καί ἐστιν, ὡς μὲν ἁ ΝΤ ποτὶ ΤΜ, οὕτως λελαμμένα τις ἁ ΡΙ ποτὶ τὰ τρία πέμπτα τᾶς ΖΗ, τουτέστι τᾶς ΜΟ, ὡς δὲ ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΝΜ καὶ τετραπλασίας τᾶς ΝΞ καὶ ἑξαπλα‐ σίας τᾶς ΝΟ καὶ τριπλασίας τᾶς ΝΤ ποτὶ τὰν συγκειμέναν
25ἔκ τε τᾶς πενταπλασίας συναμφοτέρου τᾶς ΜΝΤ καὶ
δεκαπλασίας συναμφοτέρου τᾶς ΞΝΟ, οὕτως ἑτέρα τις124

2

.

125

λελαμμένα ἁ ΙΖ ποτὶ τὰν ΖΗ, τουτέστιν ποτὶ τὰν ΜΟ, ἐσσεῖται διὰ τὰ πρότερον ἁ ΡΖ δύο πέμπτα τᾶς ΜΝ, τουτέστι τᾶς ΖΒ· ὥστε κέντρον βάρεός ἐστι τοῦ ΑΒΓ τμάματος τὸ Ρ σαμεῖον. Ἔστω δὴ καὶ τοῦ ΔΒΕ τμάματος
5κέντρον βάρεος τὸ Χ σαμεῖον. Τοῦ ἄρα ΑΔΕΓ τόμου ἐσσεῖται τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ἐπ’ εὐθείας τᾷ ΧΡ τὸν αὐτὸν ποτὶ αὐτὰν λόγον ἐχούσας, ὃν ἔχει ὁ τόμος ποτὶ τὸ λοιπὸν τμᾶμα. Ἔστιν δὲ τὸ Ι σαμεῖον. Ἐπεὶ γὰρ τᾶς μὲν ΖΒ τρία πέμπτα ἐστὶν ἁ ΒΡ, τᾶς δὲ ΗΒ τρία
10πέμπτα ἐστὶν ἁ ΒΧ, καὶ λοιπᾶς ἄρα τᾶς ΗΖ τρία πέμπτα ἐστὶν ἁ ΧΡ. Ἐπεὶ οὖν ἐστιν ὡς μὲν ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ τμᾶμα, οὕτως ἁ ΜΤ ποτὶ ΤΝ, ὡς δὲ ἁ ΜΤ ποτὶ τὰν ΤΝ, οὕτως τὰ τρία πέμπτα τᾶς ΗΖ, ἅτις ἐστὶν ἁ ΧΡ, ποτὶ ΡΙ, ἐσσεῖται ἄρα καὶ ὡς ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ
15τμᾶμα, οὕτως ἁ ΧΡ ποτὶ ΡΙ. Καί ἐστι τοῦ μὲν ὅλου τμάματος κέντρον τοῦ βάρεος τὸ Ρ σαμεῖον, τοῦ δὲ ΔΒΕ κέντρον βάρεος τὸ Χ· φανερὸν οὖν ὅτι καὶ τοῦ ΑΔΕΓ τόμου τὸ
κέντρον τοῦ βάρεος τὸ Ι σαμεῖον.125