TLG 0552 001 :: ARCHIMEDES :: De sphaera et cylindro

ARCHIMEDES Geom.
(Syracusanus: 3 B.C.)

De sphaera et cylindro

Source: Mugler, C. (ed.), Archimède, vol. 1. Paris: Les Belles Lettres, 1970: 8–131.

Citation: Volume — page — (line)

1

.

8

(1t)

Ἀρχιμήδης Δοσιθέῳ χαίρειν
2 Πρότερον μὲν ἀπέσταλκά σοι τῶν ὑφ’ ἡμῶν τεθεωρημένων γράψας μετὰ ἀποδείξεως, ὅτι πᾶν τμῆμα τὸ περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομῆς ἐπίτριτόν
5ἐστι τριγώνου τοῦ βάσιν τὴν αὐτὴν ἔχοντος τῷ τμήματι καὶ ὕψος ἴσον· ὕστερον δὲ ἡμῖν ὑποπεσόντων θεωρημάτων ἀξίων λόγου πεπραγματεύμεθα περὶ τὰς ἀποδείξεις αὐτῶν. Ἔστιν δὲ τάδε· πρῶτον μέν, ὅτι πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶν τοῦ μεγίστου κύκλου τῶν ἐν αὐτῇ·
10ἔπειτα δέ, ὅτι παντὸς τμήματος σφαίρας τῇ ἐπιφανείᾳ ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ εὐθείᾳ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἀγομένῃ ἐπὶ τὴν περιφέρειαν τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος· πρὸς δὲ τούτοις, ὅτι πάσης σφαίρας ὁ κύλινδρος ὁ βάσιν
15μὲν ἔχων ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας αὐτός τε ἡμιόλιός ἐστιν τῆς σφαίρας, καὶ ἡ ἐπιφάνεια αὐτοῦ τῆς ἐπιφανείας τῆς σφαίρας. Ταῦτα δὲ τὰ συμπτώματα τῇ φύσει προυπ‐ ῆρχεν περὶ τὰ εἰρημένα σχήματα, ἠγνοεῖτο δὲ ὑπὸ τῶν
20πρὸ ἡμῶν περὶ γεωμετρίαν ἀνεστραμμένων οὐδενὸς αὐτῶν
ἐπινενοηκότος ὅτι τούτων τῶν σχημάτων ἐστὶν συμμετρία·8

1

.

9

διόπερ οὐκ ἂν ὀκνήσαιμι ἀντιπαραβαλεῖν αὐτὰ πρός τε τὰ τοῖς ἄλλοις γεωμέτραις τεθεωρημένα καὶ πρὸς τὰ δόξαντα πολὺ ὑπερέχειν τῶν ὑπὸ Εὐδόξου περὶ τὰ στερεὰ θεωρηθέντων, ὅτι πᾶσα πυραμὶς τρίτον ἐστὶ μέρος πρίσ‐
5ματος τοῦ βάσιν ἔχοντος τὴν αὐτὴν τῇ πυραμίδι καὶ ὕψος ἴσον, καὶ ὅτι πᾶς κῶνος τρίτον μέρος ἐστὶν τοῦ κυλίνδρου τοῦ βάσιν ἔχοντος τὴν αὐτὴν τῷ κώνῳ καὶ ὕψος ἴσον· καὶ γὰρ τούτων προυπαρχόντων φυσικῶς περὶ ταῦτα τὰ σχήματα, πολλῶν πρὸ Εὐδόξου γεγενημένων ἀξίων
10λόγου γεωμετρῶν συνέβαινεν ὑπὸ πάντων ἀγνοεῖσθαι μηδ’ ὑφ’ ἑνὸς κατανοηθῆναι. Ἐξέσται δὲ περὶ τούτων ἐπισκέψασθαι τοῖς δυνησομένοις. Ὤφειλε μὲν οὖν Κόνωνος ἔτι ζῶντος ἐκδίδοσθαι ταῦτα· τῆνον γὰρ ὑπολαμβάνομέν που μάλιστα ἂν δύνασθαι κατανοῆσαι ταῦτα καὶ τὴν
15ἁρμόζουσαν ὑπὲρ αὐτῶν ἀπόφασιν ποιήσασθαι· δοκι‐ μάζοντες δὲ καλῶς ἔχειν μεταδιδόναι τοῖς οἰκείοις τῶν μαθημάτων ἀποστέλλομέν σοι τὰς ἀποδείξεις ἀναγρά‐ ψαντες, ὑπὲρ ὧν ἐξέσται τοῖς περὶ τὰ μαθήματα ἀναστρεφομένοις ἐπισκέψασθαι. Ἐρρωμένως.
20 Γράφονται πρῶτον τά τε ἀξιώματα καὶ τὰ λαμβανόμενα εἰς τὰς ἀποδείξεις αὐτῶν.
22tΑΞΙΩΜΑΤΑ
23 αʹ. Εἰσί τινες ἐν ἐπιπέδῳ καμπύλαι γραμμαὶ πεπερασμέναι, αἳ τῶν τὰ πέρατα ἐπιζευγνυουσῶν αὐτῶν
25εὐθειῶν ἤτοι ὅλαι ἐπὶ τὰ αὐτά εἰσιν ἢ οὐδὲν ἔχουσιν ἐπὶ τὰ ἕτερα. βʹ. Ἐπὶ τὰ αὐτὰ δὴ κοίλην καλῶ τὴν τοιαύτην γραμμήν,
ἐν ᾗ ἐὰν δύο σημείων λαμβανομένων ὁποιωνοῦν αἱ μεταξὺ9

1

.

10

τῶν σημείων εὐθεῖαι ἤτοι πᾶσαι ἐπὶ τὰ αὐτὰ πίπτουσιν τῆς γραμμῆς, ἢ τινὲς μὲν ἐπὶ τὰ αὐτά, τινὲς δὲ κατ’ αὐτῆς, ἐπὶ τὰ ἕτερα δὲ μηδεμία. γʹ. Ὁμοίως δὲ καὶ ἐπιφάνειαί τινές εἰσιν πεπερασμέναι,
5αὐταὶ μὲν οὐκ ἐν ἐπιπέδῳ, τὰ δὲ πέρατα ἔχουσαι ἐν ἐπιπέδῳ, αἳ τοῦ ἐπιπέδου, ἐν ᾧ τὰ πέρατα ἔχουσιν, ἤτοι ὅλαι ἐπὶ τὰ αὐτὰ ἔσονται ἢ οὐδὲν ἔχουσιν ἐπὶ τὰ ἕτερα. δʹ. Ἐπὶ τὰ αὐτὰ δὴ κοίλας καλῶ τὰς τοιαύτας ἐπι‐ φανείας, ἐν αἷς ἂν δύο σημείων λαμβανομένων αἱ μεταξὺ
10τῶν σημείων εὐθεῖαι ἤτοι πᾶσαι ἐπὶ τὰ αὐτὰ πίπτουσιν τῆς ἐπιφανείας, ἢ τινὲς μὲν ἐπὶ τὰ αὐτά, τινὲς δὲ κατ’ αὐτῆς, ἐπὶ τὰ ἕτερα δὲ μηδεμία. εʹ. Τομέα δὲ στερεὸν καλῶ, ἐπειδὰν σφαῖραν κῶνος τέμνῃ κορυφὴν ἔχων πρὸς τῷ κέντρῳ τῆς σφαίρας, τὸ
15ἐμπεριεχόμενον σχῆμα ὑπό τε τῆς ἐπιφανείας τοῦ κώνου καὶ τῆς ἐπιφανείας τῆς σφαίρας ἐντὸς τοῦ κώνου. ϛʹ. Ῥόμβον δὲ καλῶ στερεόν, ἐπειδὰν δύο κῶνοι τὴν αὐτὴν βάσιν ἔχοντες τὰς κορυφὰς ἔχωσιν ἐφ’ ἑκάτερα τοῦ ἐπιπέδου τῆς βάσεως, ὅπως οἱ ἄξονες αὐτῶν ἐπ’ εὐθείας
20ὦσι κείμενοι, τὸ ἐξ ἀμφοῖν τοῖν κώνοιν συγκείμενον στερεὸν σχῆμα.
22tΛΑΜΒΑΝΟΜΕΝΑ
23Λαμβάνω δὲ ταῦτα· αʹ. Τῶν τὰ αὐτὰ πέρατα ἐχουσῶν γραμμῶν ἐλαχίστην
25εἶναι τὴν εὐθεῖαν. βʹ. Τῶν δὲ ἄλλων γραμμῶν, ἐὰν ἐν ἐπιπέδῳ οὖσαι
τὰ αὐτὰ πέρατα ἔχωσιν, ἀνίσους εἶναι τὰς τοιαύτας,10

1

.

11

ἐπειδὰν ὦσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ ἤτοι ὅλη περιλαμβάνηται ἡ ἑτέρα αὐτῶν ὑπὸ τῆς ἑτέρας καὶ τῆς εὐθείας τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ, ἢ τινὰ μὲν περιλαμβάνηται, τινὰ δὲ κοινὰ ἔχῃ, καὶ ἐλάσσονα
5εἶναι τὴν περιλαμβανομένην. γʹ. Ὁμοίως δὲ καὶ τῶν ἐπιφανειῶν τῶν τὰ αὐτὰ πέρατα ἐχουσῶν, ἐὰν ἐν ἐπιπέδῳ τὰ πέρατα ἔχωσιν, ἐλάσσονα εἶναι τὴν ἐπίπεδον. δʹ. Τῶν δὲ ἄλλων ἐπιφανειῶν καὶ τὰ αὐτὰ πέρατα
10ἐχουσῶν, ἐὰν ἐν ἐπιπέδῳ τὰ πέρατα ᾖ, ἀνίσους εἶναι τὰς τοιαύτας, ἐπειδὰν ὦσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ ἤτοι ὅλη περιλαμβάνηται ὑπὸ τῆς ἑτέρας ἡ ἑτέρα ἐπιφάνεια καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ, ἢ τινὰ μὲν περιλαμβάνηται, τινὰ δὲ κοινὰ ἔχῃ,
15καὶ ἐλάσσονα εἶναι τὴν περιλαμβανομένην. εʹ. Ἔτι δὲ τῶν ἀνίσων γραμμῶν καὶ τῶν ἀνίσων ἐπι‐ φανειῶν καὶ τῶν ἀνίσων στερεῶν τὸ μεῖζον τοῦ ἐλάσσονος ὑπερέχειν τοιούτῳ, ὃ συντιθέμενον αὐτὸ ἑαυτῷ δυνατόν ἐστιν ὑπερέχειν παντὸς τοῦ προτεθέντος τῶν πρὸς ἄλληλα
20λεγομένων. Τούτων δὲ ὑποκειμένων, ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ, φανερὸν ὅτι ἡ περίμετρος τοῦ ἐγγραφέντος πολυγώνου ἐλάσσων ἐστὶν τῆς τοῦ κύκλου περιφερείας· ἑκάστη γὰρ τῶν τοῦ πολυγώνου πλευρῶν ἐλάσσων ἐστὶ
25τῆς τοῦ κύκλου περιφερείας τῆς ὑπὸ τῆς αὐτῆς ἀπο‐
τεμνομένης.11

1

.

12

αʹ. Ἐὰν περὶ κύκλον πολύγωνον περιγραφῇ, ἡ τοῦ περι‐ γραφέντος πολυγώνου περίμετρος μείζων ἐστὶν τῆς περιμέτρου τοῦ κύκλου.
5 Περὶ γὰρ κύκλον πολύγωνον περιγεγράφθω τὸ ὑπο‐ κείμενον. Λέγω ὅτι ἡ περίμετρος τοῦ πολυγώνου μείζων ἐστὶν τῆς περιμέτρου τοῦ κύκλου. [Omitted graphic marker] Ἐπεὶ γὰρ συναμφότερος ἡ ΒΑΛ μείζων ἐστὶ τῆς ΒΛ περιφερείας διὰ τὸ τὰ αὐτὰ πέρατα ἔχουσαν περιλαμβάνειν
10τὴν περιφέρειαν, ὁμοίως δὲ καὶ συναμφότερος μὲν ἡ ΔΓ, ΓΒ τῆς ΔΒ, συναμφότερος δὲ ἡ ΛΚ, ΚΘ τῆς ΛΘ, συναμ‐ φότερος δὲ ἡ ΖΗΘ τῆς ΖΘ, ἔτι δὲ συναμφότερος ἡ ΔΕ, ΕΖ τῆς ΔΖ, ὅλη ἄρα ἡ περίμετρος τοῦ πολυγώνου μείζων ἐστὶ τῆς περιφερείας τοῦ κύκλου.
15 βʹ. Δύο μεγεθῶν ἀνίσων δοθέντων δυνατόν ἐστιν εὑρεῖν
δύο εὐθείας ἀνίσους, ὥστε τὴν μείζονα εὐθεῖαν πρὸς τὴν12

1

.

13

ἐλάσσονα λόγον ἔχειν ἐλάσσονα ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Ἔστω δύο μεγέθη ἄνισα τὰ ΑΒ, Δ, καὶ ἔστω μεῖζον τὸ ΑΒ. Λέγω ὅτι δυνατόν ἐστι δύο εὐθείας ἀνίσους εὑρεῖν
5τὸ εἰρημένον ἐπίταγμα ποιούσας. [Omitted graphic marker] Κείσθω διὰ τὸ βʹ τοῦ αʹ τῶν Εὐκλείδου τῷ Δ ἴσον τὸ ΒΓ, καὶ κείσθω τις εὐθεῖα γραμμὴ ἡ ΖΗ· τὸ δὴ ΓΑ ἑαυτῷ ἐπισυντιθέμενον ὑπερέξει τοῦ Δ. Πεπολλαπλασιάσθω οὖν, καὶ ἔστω τὸ ΑΘ, καὶ ὁσαπλάσιόν ἐστι τὸ ΑΘ τοῦ ΑΓ,
10τοσαυταπλάσιος ἔστω ἡ ΖΗ τῆς ΗΕ· ἔστιν ἄρα, ὡς τὸ ΘΑ πρὸς ΑΓ, οὕτως ἡ ΖΗ πρὸς ΗΕ· καὶ ἀνάπαλίν ἐστιν, ὡς ἡ ΕΗ πρὸς ΗΖ, οὕτως τὸ ΑΓ πρὸς ΑΘ. Καὶ ἐπεὶ μεῖζόν ἐστιν τὸ ΑΘ τοῦ Δ, τουτέστι τοῦ ΓΒ, τὸ ἄρα ΓΑ πρὸς τὸ ΑΘ λόγον ἐλάσσονα ἔχει ἤπερ τὸ ΓΑ πρὸς ΓΒ. Ἀλλ’ ὡς
15τὸ ΓΑ πρὸς ΑΘ, οὕτως ἡ ΕΗ πρὸς ΗΖ· ἡ ΕΗ ἄρα πρὸς ΗΖ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΓΑ πρὸς ΓΒ· καὶ συνθέντι ἡ ΕΖ [ἄρα] πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΑΒ πρὸς ΒΓ [διὰ λῆμμα]. Ἴσον δὲ τὸ ΒΓ τῷ Δ· ἡ ΕΖ ἄρα πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΑΒ πρὸς
20τὸ Δ.
Εὑρημέναι εἰσὶν ἄρα δύο εὐθεῖαι ἄνισοι ποιοῦσαι τὸ13

1

.

14

εἰρημένον ἐπίταγμα [τουτέστιν τὴν μείζονα πρὸς τὴν ἐλάσσονα λόγον ἔχειν ἐλάσσονα ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον].
γʹ.
5 Δύο μεγεθῶν ἀνίσων δοθέντων καὶ κύκλου δυνατόν ἐστιν εἰς τὸν κύκλον πολύγωνον ἐγγράψαι καὶ ἄλλο περιγράψαι, ὅπως ἡ τοῦ περιγραφομένου πολυγώνου πλευρὰ πρὸς τὴν τοῦ ἐγγραφομένου πολυγώνου πλευρὰν ἐλάσσονα λόγον ἔχῃ ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλαττον.
10 Ἔστω τὰ δοθέντα δύο μεγέθη τὰ Α, Β, ὁ δὲ δοθεὶς κύκλος ὁ ὑποκείμενος. Λέγω οὖν ὅτι δυνατόν ἐστι ποιεῖν τὸ ἐπίταγμα. [Omitted graphic marker] Εὑρήσθωσαν γὰρ δύο εὐθεῖαι αἱ Θ, ΚΛ, ὧν μείζων
ἔστω ἡ Θ, ὥστε τὴν Θ πρὸς τὴν ΚΛ ἐλάσσονα λόγον14

1

.

15

ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλαττον, καὶ ἤχθω ἀπὸ τοῦ Λ τῇ ΛΚ πρὸς ὀρθὰς ἡ ΛΜ, καὶ ἀπὸ τοῦ Κ τῇ Θ ἴση κατήχθω ἡ ΚΜ [δυνατὸν γὰρ τοῦτο], καὶ ἤχθωσαν τοῦ κύκλου δύο διάμετροι πρὸς ὀρθὰς ἀλλήλαις αἱ ΓΕ,
5ΔΖ. Τέμνοντες οὖν τὴν ὑπὸ τῶν ΔΗΓ γωνίαν δίχα καὶ τὴν ἡμίσειαν αὐτῆς δίχα καὶ αἰεὶ τοῦτο ποιοῦντες λείψομέν τινα γωνίαν ἐλάσσονα ἢ διπλασίαν τῆς ὑπὸ ΛΚΜ. Λελείφθω καὶ ἔστω ἡ ὑπὸ ΝΗΓ, καὶ ἐπεζεύχθω ἡ ΝΓ· ἡ ἄρα ΝΓ πολυγώνου ἐστὶ πλευρὰ ἰσοπλεύρου [ἐπείπερ ἡ
10ὑπὸ ΝΗΓ γωνία μετρεῖ τὴν ὑπὸ ΔΗΓ ὀρθὴν οὖσαν, καὶ ἡ ΝΓ ἄρα περιφέρεια μετρεῖ τὴν ΓΔ τέταρτον οὖσαν κύκλου· ὥστε καὶ τὸν κύκλον μετρεῖ. Πολυγώνου ἄρα ἐστὶ πλευρὰ ἰσοπλεύρου· φανερὸν γάρ ἐστι τοῦτο]. Καὶ τετμήσθω ἡ ὑπὸ ΓΗΝ γωνία δίχα τῇ ΗΞ εὐθείᾳ, καὶ ἀπὸ
15τοῦ Ξ ἐφαπτέσθω τοῦ κύκλου ἡ ΟΞΠ, καὶ ἐκβεβλήσθωσαν αἱ ΗΝΠ, ΗΓΟ· ὥστε καὶ ἡ ΠΟ πολυγώνου ἐστὶ πλευρὰ τοῦ περιγραφομένου περὶ τὸν κύκλον καὶ ἰσοπλεύρου [φανερὸν ὅτι καὶ ὁμοίου τῷ ἐγγραφομένῳ, οὗ πλευρὰ ἡ ΝΓ]. Ἐπεὶ δὲ ἐλάσσων ἐστὶν ἢ διπλασία ἡ ὑπὸ ΝΗΓ τῆς
20ὑπὸ ΛΚΜ, διπλασία δὲ τῆς ὑπὸ ΤΗΓ, ἐλάσσων ἄρα ἡ ὑπὸ ΤΗΓ τῆς ὑπὸ ΛΚΜ. Καί εἰσιν ὀρθαὶ αἱ πρὸς τοῖς Λ, Τ· ἡ ἄρα ΜΚ πρὸς ΛΚ μείζονα λόγον ἔχει ἤπερ ἡ ΓΗ πρὸς ΗΤ. Ἴση δὲ ἡ ΓΗ τῇ ΗΞ· ὥστε ἡ ΗΞ πρὸς ΗΤ ἐλάσσονα λόγον ἔχει, τουτέστιν ἡ ΠΟ πρὸς ΝΓ, ἤπερ ἡ
25ΜΚ πρὸς ΚΛ· ἔτι δὲ ἡ ΜΚ πρὸς ΚΛ ἐλάσσονα λόγον
ἔχει ἤπερ τὸ Α πρὸς τὸ Β. Καί ἐστιν ἡ μὲν ΠΟ πλευρὰ τοῦ15

1

.

16

περιγραφομένου πολυγώνου, ἡ δὲ ΓΝ τοῦ ἐγγραφομένου· ὅπερ προέκειτο εὑρεῖν.
δʹ. Πάλιν δύο μεγεθῶν ἀνίσων ὄντων καὶ τομέως δυνατόν
5ἐστι περὶ τὸν τομεὰ πολύγωνον περιγράψαι καὶ ἄλλο ἐγγράψαι, ὥστε τὴν τοῦ περιγεγραμμένου πλευρὰν πρὸς τὴν τοῦ ἐγγεγραμμένου πλευρὰν ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Ἔστω γὰρ πάλιν δύο μεγέθη ἄνισα τὰ Ε, Ζ, ὧν μεῖζον
10ἔστω τὸ Ε, κύκλος δέ τις ὁ ΑΒΓ κέντρον ἔχων τὸ Δ, καὶ πρὸς τῷ Δ τομεὺς συνεστάτω ὁ ΑΔΒ· δεῖ δὴ περιγράψαι καὶ ἐγγράψαι πολύγωνον περὶ τὸν ΑΒΔ τομέα ἴσας ἔχον τὰς πλευρὰς χωρὶς τῶν ΒΔΑ, ὅπως γένηται τὸ ἐπίταγμα. [Omitted graphic marker] Εὑρήσθωσαν γὰρ δύο εὐθεῖαι αἱ Η, ΘΚ ἄνισοι καὶ
15μείζων ἡ Η, ὥστε τὴν Η πρὸς τὴν ΘΚ ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον [δυνατὸν γὰρ τοῦτο], καὶ ἀπὸ τοῦ Θ ὁμοίως ἀχθείσης πρὸς ὀρθὰς τῇ
ΚΘ προσβεβλήσθω τῇ Η ἴση ἡ ΚΛ [δυνατὸν γάρ, ἐπεὶ16

1

.

17

μείζων ἐστὶν ἡ Η τῆς ΘΚ]. Τεμνομένης δὴ τῆς ὑπὸ τῶν ΑΔΒ γωνίας δίχα καὶ τῆς ἡμισείας δίχα καὶ ἀεὶ τούτου γινομένου λειφθήσεταί τις γωνία ἐλάσσων οὖσα ἢ διπλασία τῆς ὑπὸ ΛΚΘ. Λελείφθω οὖν ἡ ὑπὸ ΑΔΜ· ἡ ΑΜ οὖν γίνεται
5πολυγώνου πλευρὰ ἐγγραφομένου εἰς τὸν κύκλον. Καὶ ἐὰν τέμωμεν τὴν ὑπὸ ΑΔΜ γωνίαν δίχα τῇ ΔΝ καὶ ἀπὸ τοῦ Ν ἀγάγωμεν ἐφαπτομένην τοῦ κύκλου τὴν ΝΞΟ, αὕτη πλευρὰ ἔσται τοῦ πολυγώνου τοῦ περιγραφομένου περὶ τὸν αὐτὸν κύκλον ὁμοίου τῷ εἰρημένῳ· καὶ ὁμοίως τοῖς
10προειρημένοις ἡ ΞΟ πρὸς τὴν ΑΜ ἐλάσσονα λόγον ἔχει ἤπερ τὸ Ε μέγεθος πρὸς τὸ Ζ.
εʹ. Κύκλου δοθέντος καὶ δύο μεγεθῶν ἀνίσων περιγράψαι περὶ τὸν κύκλον πολύγωνον καὶ ἄλλο ἐγγράψαι ὥστε τὸ
15περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Ἐκκείσθω κύκλος ὁ Α καὶ δύο μεγέθη ἄνισα τὰ Ε, Ζ, καὶ μεῖζον τὸ Ε· δεῖ οὖν πολύγωνον ἐγγράψαι εἰς τὸν
κύκλον καὶ ἄλλο περιγράψαι, ἵνα γένηται τὸ ἐπιταχθέν. [Omitted graphic marker]17

1

.

18

Λαμβάνω γὰρ δύο εὐθείας ἀνίσους τὰς Γ, Δ, ὧν μείζων ἔστω ἡ Γ, ὥστε τὴν Γ πρὸς τὴν Δ ἐλάσσονα λόγον ἔχειν ἢ τὴν Ε πρὸς τὴν Ζ· καὶ τῶν Γ, Δ μέσης ἀνάλογον ληφθείσης τῆς Η μείζων ἄρα καὶ ἡ Γ τῆς Η. Περιγεγράφθω
5δὴ περὶ κύκλον πολύγωνον καὶ ἄλλο ἐγγεγράφθω, ὥστε τὴν τοῦ περιγραφέντος πολυγώνου πλευρὰν πρὸς τὴν τοῦ ἐγγραφέντος ἐλάσσονα λόγον ἔχειν ἢ τὴν Γ πρὸς τὴν Η [καθὼς ἐμάθομεν]· διὰ τοῦτο δὴ καὶ ὁ διπλάσιος λόγος τοῦ διπλασίου ἐλάσσων ἐστί. Καὶ τοῦ μὲν τῆς
10πλευρᾶς πρὸς τὴν πλευρὰν διπλάσιός ἐστι ὁ τοῦ πολυ‐ γώνου πρὸς τὸ πολύγωνον [ὅμοια γάρ], τῆς δὲ Γ πρὸς τὴν Η ὁ τῆς Γ πρὸς τὴν Δ· καὶ τὸ περιγραφὲν ἄρα πολύγωνον πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει ἤπερ
15ἡ Γ πρὸς τὴν Δ· πολλῷ ἄρα τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει ἤπερ τὸ Ε πρὸς τὸ Ζ.
ϛʹ. Ὁμοίως δὴ δείξομεν ὅτι δύο μεγεθῶν ἀνίσων δοθέντων καὶ τομέως δυνατόν ἐστιν περὶ τὸν τομέα πολύγωνον
20περιγράψαι καὶ ἄλλο ἐγγράψαι ὅμοιον αὐτῷ, ἵνα τὸ
20περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχῃ ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Φανερὸν δὲ καὶ τοῦτο ὅτι, ἐὰν δοθῇ κύκλος ἢ τομεὺς
καὶ χωρίον τι, δυνατόν ἐστιν ἐγγράφοντα εἰς τὸν κύκλον18

1

.

19

ἢ τὸν τομέα πολύγωνα ἰσόπλευρα καὶ ἔτι ἀεὶ εἰς τὰ περιλειπόμενα τμήματα λείπειν τινὰ τμήματα τοῦ κύκλου ἢ τομέως, ἅπερ ἔσται ἐλάσσονα τοῦ προκειμένου χωρίου· ταῦτα γὰρ ἐν τῇ Στοιχειώσει παραδέδοται.
5 Δεικτέον δὲ ὅτι καὶ κύκλου δοθέντος ἢ τομέως καὶ χωρίου δυνατόν ἐστι περιγράψαι πολύγωνον περὶ τὸν κύκλον ἢ τὸν τομέα, ὥστε τὰ περιλειπόμενα τῆς περι‐ γραφῆς τμήματα ἐλάσσονα εἶναι τοῦ δοθέντος χωρίου· ἔσται γὰρ ἐπὶ κύκλου δείξαντα μεταγαγεῖν τὸν ὅμοιον
10λόγον καὶ ἐπὶ τοῦ τομέως. [Omitted graphic marker] Δεδόσθω κύκλος ὁ Α καὶ χωρίον τι τὸ Β. Δυνατὸν δὴ περιγράψαι περὶ τὸν κύκλον πολύγωνον, ὥστε τὰ ἀπο‐ λειφθέντα τμήματα μεταξὺ τοῦ κύκλου καὶ τοῦ πολυγώνου ἐλάσσονα εἶναι τοῦ Β χωρίου· καὶ γὰρ ὄντων δύο μεγεθῶν
15ἀνίσων, μείζονος μὲν συναμφοτέρου τοῦ τε χωρίου καὶ τοῦ κύκλου, ἐλάσσονος δὲ τοῦ κύκλου, περιγεγράφθω περὶ τὸν κύκλον πολύγωνον καὶ ἄλλο ἐγγεγράφθω, ὥστε
τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν19

1

.

20

ἢ τὸ εἰρημένον μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Τοῦτο δὴ τὸ περιγραφόμενον πολύγωνόν ἐστιν, οὗ τὰ περιλείμ‐ ματα ἔσται ἐλάσσονα τοῦ προτεθέντος χωρίου τοῦ Β. Εἰ γὰρ τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα
5λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς αὐτὸν τὸν κύκλον, τοῦ δὲ ἐγγραφομένου μείζων ὁ κύκλος, πολλῷ μᾶλλον τὸ περιγραφὲν πρὸς τὸν κύκλον ἐλάσσονα λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς αὐτὸν τὸν κύκλον· καὶ
10διελόντι ἄρα τὰ ἀπολείμματα τοῦ περιγεγραμμένου πολυγώνου πρὸς τὸν κύκλον ἐλάσσονα λόγον ἔχει ἤπερ τὸ Β χωρίον πρὸς τὸν κύκλον· ἐλάσσονα ἄρα τὰ ἀπολείμ‐ ματα τοῦ περιγεγραμμένου πολυγώνου τοῦ Β χωρίου. Ἢ οὕτως· ἐπεὶ τὸ περιγραφὲν πρὸς τὸν κύκλον ἐλάσσονα
15λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς τὸν κύκλον, διὰ τοῦτο δὴ ἔλασσον ἔσται τὸ περιγραφὲν συναμφοτέρου· ὥστε καὶ ὅλα τὰ περιλείμματα ἐλάσσονα ἔσται τοῦ χωρίου τοῦ Β. Ὁμοίως δὲ καὶ ἐπὶ τοῦ τομέως.
20
ζʹ. Ἐὰν ἐν ἰσοσκελεῖ κώνῳ πυραμὶς ἐγγραφῇ ἰσόπλευρον ἔχουσα βάσιν, ἡ ἐπιφάνεια αὐτῆς χωρὶς τῆς βάσεως ἴση ἐστι τριγώνῳ βάσιν μὲν ἔχοντι ἴσην τῇ περιμέτρῳ τῆς βάσεως, ὕψος δὲ τὴν ἀπὸ τῆς κορυφῆς ἐπὶ μίαν πλευρὰν
20τῆς βάσεως κάθετον ἀγομένην. Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ ΑΒΓ κύκλος, καὶ εἰς αὐτὸν ἐγγεγράφθω πυραμὶς ἰσόπλευρον ἔχουσα βάσιν τὸ ΑΒΓ· λέγω ὅτι ἡ ἐπιφάνεια αὐτῆς χωρὶς τῆς βάσεως
ἴση ἐστὶ τῷ εἰρημένῳ τριγώνῳ. [Omitted graphic marker]20

1

.

21

Ἐπεὶ γὰρ ἰσοσκελὴς ὁ κῶνος, καὶ ἰσόπλευρος ἡ βάσις τῆς πυραμίδος, τὰ ὕψη τῶν περιεχόντων τριγώνων τὴν πυραμίδα ἴσα ἐστὶν ἀλλήλοις. Καὶ βάσιν μὲν ἔχει τὰ τρίγωνα τὰς ΑΒ, ΒΓ, ΓΑ, ὕψος δὲ τὸ εἰρημένον· ὥστε τὰ
5τρίγωνα ἴσα ἐστὶ τριγώνῳ βάσιν μὲν ἔχοντι τὴν ἴσην ταῖς ΑΒ, ΒΓ, ΓΑ, ὕψος δὲ τὴν εἰρημένην εὐθεῖαν [τουτέστιν ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τοῦ ΑΒΓ τριγώνου].
8t[Σαφέστερον ἄλλως ἡ δεῖξις.
9Ἔστω κῶνος ἰσοσκελής, οὗ βάσις μὲν ὁ ΑΒΓ κύκλος,
10κορυφὴ δὲ τὸ Δ σημεῖον, καὶ ἐγγεγράφθω εἰς τὸν κῶνον πυραμὶς βάσιν [μὲν] ἔχουσα ἰσόπλευρον τρίγωνον τὸ ΑΒΓ, καὶ ἐπεζεύχθωσαν αἱ ΔΑ, ΔΓ, ΔΒ· λέγω ὅτι τὰ ΑΔΒ, ΑΔΓ, ΒΔΓ τρίγωνα ἴσα ἐστὶ τριγώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ περιμέτρῳ τοῦ ΑΒΓ τριγώνου, ἡ δὲ ἀπὸ τῆς κορυφῆς
15ἐπὶ τὴν βάσιν κάθετος ἴση τῇ καθέτῳ τῇ ἀπὸ τοῦ Δ ἐπὶ τὴν ΒΓ ἀγομένῃ. Ἤχθωσαν γὰρ κάθετοι αἱ ΔΚ, ΔΛ, ΔΜ· αὗται ἄρα ἴσαι ἀλλήλαις εἰσίν. Καὶ κείσθω τρίγωνον τὸ ΕΖΗ ἔχον τὴν μὲν
ΕΖ βάσιν τῇ περιμέτρῳ τοῦ ΑΒΓ τριγώνου ἴσην, τὴν δὲ21

1

.

22

ΗΘ κάθετον τῇ ΔΛ ἴσην. Ἐπεὶ οὖν τὸ ὑπὸ τῶν ΒΓ, ΔΛ διπλάσιόν ἐστι τοῦ ΔΒΓ τριγώνου, ἔστιν δὲ καὶ τὸ μὲν [Omitted graphic marker] ὑπὸ τῶν ΑΒ, ΔΚ διπλάσιον τοῦ ΑΒΔ τριγώνου, τὸ δὲ ὑπὸ ΑΓ, ΔΜ διπλάσιον τοῦ ΑΔΓ τριγώνου, τὸ ἄρα ὑπὸ
5τῆς περιμέτρου τοῦ ΑΒΓ τριγώνου, τουτέστι τῆς ΕΖ, καὶ τῆς ΔΛ, τουτέστι τῆς ΗΘ, διπλάσιόν ἐστι τῶν ΑΔΒ, ΒΔΓ, ΑΔΓ τριγώνων. Ἔστι δὲ καὶ τὸ ὑπὸ ΕΖ, ΗΘ διπλάσιον τοῦ ΕΖΗ τριγώνου· ἴσον ἄρα τὸ ΕΖΗ τρίγωνον τοῖς ΑΔΒ, ΒΔΓ, ΑΔΓ τριγώνοις].
10ηʹ.
10Ἐὰν περὶ κῶνον ἰσοσκελῆ πυραμὶς περιγραφῇ, ἡ
ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἴση ἐστὶν22

1

.

23

τριγώνῳ βάσιν μὲν ἔχοντι τὴν ἴσην τῇ περιμέτρῳ τῆς βάσεως, ὕψος δὲ τὴν πλευρὰν τοῦ κώνου. Ἔστω κῶνος, οὗ βάσις ὁ ΑΒΓ κύκλος, καὶ πυραμὶς περιγεγράφθω, ὥστε τὴν βάσιν αὐτῆς, τουτέστι τὸ ΔΕΖ
5πολύγωνον, περιγεγραμμένον περὶ τὸν ΑΒΓ κύκλον εἶναι· λέγω ὅτι ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἴση ἐστὶ τῷ εἰρημένῳ τριγώνῳ. Ἐπεὶ γὰρ [ὁ ἄξων τοῦ κώνου ὀρθός ἐστι πρὸς τὴν βάσιν, τουτέστι πρὸς τὸν ΑΒΓ κύκλον, καὶ] αἱ ἀπὸ τοῦ
10κέντρου τοῦ κύκλου ἐπὶ τὰς ἁφὰς ἐπιζευγνύμεναι εὐθεῖαι κάθετοί εἰσιν ἐπὶ τὰς ἐφαπτομένας, ἔσονται ἄρα καὶ αἱ ἀπὸ τῆς κορυφῆς τοῦ κώνου ἐπὶ τὰς ἁφὰς ἐπιζευγνύμεναι
κάθετοι ἐπὶ τὰς ΔΕ, ΖΕ, ΖΔ. Αἱ ΗΑ, ΗΒ, ΗΓ ἄρα αἱ εἰρη‐[Omitted graphic marker]23

1

.

24

μέναι κάθετοι ἴσαι εἰσὶν ἀλλήλαις· πλευραὶ γάρ εἰσιν τοῦ κώνου. Κείσθω δὴ τὸ τρίγωνον τὸ ΘΚΛ ἴσην ἔχον τὴν μὲν ΘΚ τῇ περιμέτρῳ τοῦ ΔΕΖ τριγώνου, τὴν δὲ ΛΜ κάθετον ἴσην τῇ ΗΑ. Ἐπεὶ οὖν τὸ μὲν ὑπὸ ΔΕ, ΑΗ διπλάσιόν ἐστι
5τοῦ ΕΔΗ τριγώνου, τὸ δὲ ὑπὸ ΔΖ, ΗΒ διπλάσιόν ἐστι τοῦ ΔΖΗ τριγώνου, τὸ δὲ ὑπὸ ΕΖ, ΓΗ διπλάσιόν ἐστιν τοῦ ΕΗΖ τριγώνου, ἔστιν ἄρα τὸ ὑπὸ τῆς ΘΚ καὶ τῆς ΑΗ, τουτέστι τῆς ΜΛ, διπλάσιον τῶν ΕΔΗ, ΖΔΗ, ΕΗΖ τριγώ‐ νων. Ἔστιν δὲ καὶ τὸ ὑπὸ τῶν ΘΚ, ΛΜ διπλάσιον τοῦ
10ΛΚΘ τριγώνου· διὰ τοῦτο δὴ ἴση ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως τριγώνῳ βάσιν μὲν ἔχοντι ἴσην τῇ περιμέτρῳ τοῦ ΔΕΖ, ὕψος δὲ τὴν πλευρὰν τοῦ κώνου.
θʹ.
15 Ἐὰν κώνου τινὸς ἰσοπλεύρου εἰς τὸν κύκλον, ὅς ἐστι βάσις τοῦ κώνου, εὐθεῖα γραμμὴ ἐμπέσῃ, ἀπὸ δὲ τῶν περάτων αὐτῆς εὐθεῖαι γραμμαὶ ἀχθῶσιν ἐπὶ τὴν κορυφὴν τοῦ κώνου, τὸ περιληφθὲν τρίγωνον ὑπό τε τῆς ἐμπεσούσης καὶ τῶν ἐπιζευχθεισῶν ἐπὶ τὴν κορυφὴν ἔλασσον ἔσται τῆς
20ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν ἐπὶ τὴν κορυφὴν ἐπιζευχθεισῶν. Ἔστω κώνου ἰσοσκελοῦς βάσις ὁ ΑΒΓ κύκλος, κορυφὴ δὲ τὸ Δ, καὶ διήχθω τις εἰς αὐτὸν εὐθεῖα ἡ ΑΓ, καὶ ἀπὸ τῆς κορυφῆς ἐπὶ τὰ Α, Γ ἐπεζεύχθωσαν αἱ ΑΔ, ΔΓ· λέγω
25ὅτι τὸ ΑΔΓ τρίγωνον ἔλασσόν ἐστιν τῆς ἐπιφανείας τῆς
κωνικῆς τῆς μεταξὺ τῶν ΑΔΓ.24

1

.

25

[Omitted graphic marker] Τετμήσθω ἡ ΑΒΓ περιφέρεια δίχα κατὰ τὸ Β, καὶ ἐπεζεύχθωσαν αἱ ΑΒ, ΓΒ, ΔΒ· ἔσται δὴ τὰ ΑΒΔ, ΒΓΔ τρίγωνα μείζονα τοῦ ΑΔΓ τριγώνου. Ὧι δὴ ὑπερέχει τὰ εἰρημένα τρίγωνα τοῦ ΑΔΓ τριγώνου, ἔστω τὸ Θ. Τὸ δὴ
5Θ ἤτοι τῶν ΑΒ, ΒΓ τμημάτων ἔλασσόν ἐστι ἢ οὔ. Ἔστω μὴ ἔλασσον πρότερον. Ἐπεὶ οὖν δύο εἰσὶν ἐπιφάνειαι ἥ τε κωνικὴ ἡ μεταξὺ τῶν ΑΔΒ μετὰ τοῦ ΑΕΒ τμήματος καὶ ἡ τοῦ ΑΔΒ τριγώνου τὸ αὐτὸ πέρας ἔχουσαι τὴν περίμετρον τοῦ τριγώνου τοῦ ΑΔΒ, μείζων
10ἔσται ἡ περιλαμβάνουσα τῆς περιλαμβανομένης· μείζων ἄρα ἐστὶν ἡ κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΔΒ μετὰ τοῦ ΑΕΒ τμήματος τοῦ ΑΒΔ τριγώνου. Ὁμοίως δὲ καὶ ἡ μεταξὺ τῶν ΒΔΓ μετὰ τοῦ ΓΖΒ τμήματος μείζων ἐστὶν τοῦ ΒΔΓ τριγώνου· ὅλη ἄρα ἡ κωνικὴ ἐπιφάνεια μετὰ
15τοῦ Θ χωρίου μείζων ἐστὶ τῶν εἰρημένων τριγώνων. Τὰ δὲ εἰρημένα τρίγωνα ἴσα ἐστὶν τῷ τε ΑΔΓ τριγώνῳ καὶ τῷ
Θ χωρίῳ. Κοινὸν ἀφῃρήσθω τὸ Θ χωρίον· λοιπὴ ἄρα ἡ25

1

.

26

κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΔΓ μείζων ἐστὶν τοῦ ΑΔΓ τριγώνου. Ἔστω δὴ τὸ Θ ἔλασσον τῶν ΑΒ, ΒΓ τμημάτων. Τέμνοντες δὴ τὰς ΑΒ, ΒΓ περιφερείας δίχα καὶ τὰς ἡμισείας αὐτῶν
5δίχα λείψομεν τμήματα ἐλάσσονα ὄντα τοῦ Θ χωρίου. Λελείφθω τὰ ἐπὶ τῶν ΑΕ, ΕΒ, ΒΖ, ΖΓ εὐθειῶν, καὶ ἐπεζεύχ‐ θωσαν αἱ ΔΕ, ΔΖ. Πάλιν τοίνυν κατὰ τὰ αὐτὰ ἡ μὲν ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν ΑΔΕ μετὰ τοῦ ἐπὶ τῆς ΑΕ τμήματος μείζων ἐστὶν τοῦ ΑΔΕ τριγώνου, ἡ δὲ
10μεταξὺ τῶν ΕΔΒ μετὰ τοῦ ἐπὶ τῆς ΕΒ τμήματος μείζων ἐστὶν τοῦ ΕΔΒ τριγώνου· ἡ ἄρα ἐπιφάνεια ἡ μεταξὺ τῶν ΑΔΒ μετὰ τῶν ἐπὶ τῶν ΑΕ, ΕΒ τμημάτων μείζων ἐστὶν τῶν ΑΔΕ, ΕΒΔ τριγώνων. Ἐπεὶ δὲ τὰ ΑΕΔ, ΔΕΒ τρίγωνα μείζονά ἐστιν τοῦ ΑΒΔ τριγώνου, καθὼς δέδεικται, πολλῷ
15ἄρα ἡ ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν ΑΔΒ μετὰ τῶν ἐπὶ τῶν ΑΕ, ΕΒ τμημάτων μείζων ἐστὶ τοῦ ΑΔΒ τριγώνου. Διὰ τὰ αὐτὰ δὴ καὶ ἡ ἐπιφάνεια ἡ μεταξὺ τῶν ΒΔΓ μετὰ τῶν ἐπὶ τῶν ΒΖ, ΖΓ τμημάτων μείζων ἐστὶν τοῦ ΒΔΓ τριγώνου· ὅλη ἄρα ἡ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΔΓ μετὰ
20τῶν εἰρημένων τμημάτων μείζων ἐστὶ τῶν ΑΒΔ, ΔΒΓ τρι‐ γώνων. Ταῦτα δέ ἐστιν ἴσα τῷ ΑΔΓ τριγώνῳ καὶ τῷ Θ χωρίῳ· ὧν τὰ εἰρημένα τμήματα ἐλάσσονα τοῦ Θ χωρίου· λοιπὴ ἄρα ἡ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΔΓ μείζων ἐστὶν τοῦ ΑΔΓ τριγώνου.
25 ιʹ. Ἐὰν ἐπιψαύουσαι ἀχθῶσιν τοῦ κύκλου, ὅς ἐστι βάσις
τοῦ κώνου, ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι τῷ κύκλῳ καὶ26

1

.

27

συμπίπτουσαι ἀλλήλαις, ἀπὸ δὲ τῶν ἁφῶν καὶ τῆς συμπτώ‐ σεως ἐπὶ τὴν κορυφὴν τοῦ κώνου εὐθεῖαι ἀχθῶσιν, τὰ περιεχόμενα τρίγωνα ὑπὸ τῶν ἐπιψαυουσῶν καὶ τῶν ἐπὶ τὴν κορυφὴν τοῦ κώνου ἐπιζευχθεισῶν εὐθειῶν μείζονά
5ἐστιν τῆς τοῦ κώνου ἐπιφανείας τῆς ἀπολαμβανομένης ὑπ’ αὐτῶν. Ἔστω κῶνος οὗ βάσις μὲν ὁ ΑΒΓ κύκλος, κορυφὴ δὲ τὸ Ε σημεῖον, καὶ τοῦ ΑΒΓ κύκλου ἐφαπτόμεναι ἤχθωσαν ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι αἱ ΑΔ, ΓΔ, καὶ ἀπὸ τοῦ Ε
10σημείου, ὅ ἐστιν κορυφὴ τοῦ κώνου, ἐπὶ τὰ Α, Δ, Γ ἐπεζεύ‐ χθωσαν αἱ ΕΑ, ΕΔ, ΕΓ· λέγω ὅτι τὰ ΑΔΕ, ΔΕΓ τρίγωνα μείζονά ἐστι τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕ, ΓΕ εὐθειῶν καὶ τῆς ΑΒΓ περιφερείας. Ἤχθω γὰρ ἡ ΗΒΖ ἐφαπτομένη τοῦ κύκλου καὶ παράλ‐
15ληλος οὖσα τῇ ΑΓ δίχα τμηθείσης τῆς ΑΒΓ περιφερείας κατὰ τὸ Β, καὶ ἀπὸ τῶν Η, Ζ ἐπὶ τὸ Ε ἐπεζεύχθωσαν αἱ ΗΕ, ΖΕ. Καὶ ἐπεὶ μείζους εἰσὶν αἱ ΗΔ, ΔΖ τῆς ΗΖ, κοιναὶ προσκείσθωσαν αἱ ΗΑ, ΖΓ· ὅλαι ἄρα αἱ ΑΔ, ΔΓ μείζους εἰσὶν τῶν ΑΗ, ΗΖ, ΖΓ. Καὶ ἐπεὶ αἱ ΑΕ, ΕΒ, ΕΓ πλευραί
20εἰσιν τοῦ κώνου, ἴσαι εἰσὶν διὰ τὸ ἰσοσκελῆ εἶναι τὸν κῶνον· ὁμοίως δὲ καὶ κάθετοί εἰσιν [ὡς ἐδείχθη ἐν τῷ λήμματι, τὰ δὲ ὑπὸ τῶν καθέτων καὶ τῶν βάσεων διπλασίονά ἐστιν τῶν τριγώνων]· μείζονα ἄρα ἐστὶ τὰ ΑΕΔ, ΔΕΓ τρίγωνα τῶν ΑΗΕ, ΗΕΖ, ΖΕΓ τριγώνων [εἰσὶν γὰρ αἱ μὲν
25ΑΗ, ΗΖ, ΖΓ ἐλάσσους τῶν ΓΔ, ΔΑ, τὰ δὲ ὕψη αὐτῶν ἴσα] [φανερὸν γὰρ ὅτι ἡ ἀπὸ τῆς κορυφῆς τοῦ ὀρθοῦ κώνου ἐπὶ τὴν ἐφαπὴν τῆς βάσεως ἐπιζευγνυμένη κάθετός ἐστιν ἐπὶ τὴν ἐφαπτομένην]. Ὧι δὴ μείζονά ἐστιν τὰ ΑΕΔ,
ΔΓΕ τρίγωνα τῶν ΑΕΗ, ΗΕΖ, ΖΕΓ τριγώνων, ἔστω τὸ Θ27

1

.

28

χωρίον. Τὸ δὴ Θ χωρίον ἤτοι ἔλαττόν ἐστιν τῶν ΑΗΒΚ, ΒΖΓΛ ἀποτμημάτων ἢ οὐκ ἔλαττον. [Omitted graphic marker] Ἔστω πρότερον μὴ ἔλαττον. Ἐπεὶ οὖν εἰσιν ἐπιφάνειαι σύνθετοι, ἥ τε τῆς πυραμίδος τῆς ἐπὶ βάσεως τοῦ ΗΑΓΖ
5τραπεζίου κορυφὴν ἔχουσα τὸ Ε καὶ ἡ κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΕΓ μετὰ τοῦ ΑΒΓ τμήματος, καὶ πέρας ἔχουσι τὴν αὐτὴν περίμετρον τοῦ ΑΕΓ τριγώνου, δῆλον ὡς ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τοῦ ΑΕΓ τριγώνου μείζων ἐστὶν τῆς κωνικῆς ἐπιφανείας μετὰ τοῦ τμήματος
10τοῦ ΑΒΓ. Κοινὸν ἀφῃρήσθω τὸ ΑΒΓ τμῆμα· λοιπὰ ἄρα
τὰ τρίγωνα τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ μετὰ τῶν ΑΗΒΚ, ΒΖΓΛ28

1

.

29

περιλειμμάτων μείζονά ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕ, ΕΓ. Τῶν δὲ ΑΗΒΚ, ΒΖΓΛ περιλειμμάτων οὐκ ἔλασσόν ἐστιν τὸ Θ χωρίον· πολλῷ ἄρα τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ μείζονα ἔσται τῆς κωνικῆς
5ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ. Ἀλλὰ τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ ἐστὶν τὰ ΑΕΔ, ΔΕΓ τρίγωνα· τὰ ἄρα ΑΕΔ, ΔΕΓ τρίγωνα μείζονα ἔσται τῆς εἰρημένης κωνικῆς ἐπιφανείας. Ἔστω δὴ τὸ Θ ἔλασσον τῶν περιλειμμάτων. Ἀεὶ δὴ
10περιγράφοντες πολύγωνα περὶ τὰ τμήματα ὁμοίως δίχα τεμνομένων τῶν περιλειπομένων περιφερειῶν καὶ ἀγομένων ἐφαπτομένων λείψομέν τινα ἀπολείμματα, ἃ ἔσται ἐλάσ‐ σονα τοῦ Θ χωρίου. Λελείφθω καὶ ἔστω τὰ ΑΜΚ, ΚΝΒ, ΒΞΛ, ΛΟΓ ἐλάσσονα ὄντα τοῦ Θ χωρίου, καὶ ἐπεζεύχθω
15ἐπὶ τὸ Ε. Πάλιν δὴ φανερὸν ὅτι τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα τῶν ΑΕΜ, ΜΕΝ, ΝΕΞ, ΞΕΟ, ΟΕΓ τριγώνων ἔσται μείζονα [αἵ τε γὰρ βάσεις τῶν βάσεών εἰσι μείζους καὶ τὸ ὕψος ἴσον]. Ἔτι δὲ πάλιν ὁμοίως μείζονα ἔχει ἐπιφάνειαν ἡ πυραμὶς ἡ βάσιν μὲν ἔχουσα τὸ ΑΜΝΞΟΓ πολύγωνον,
20κορυφὴν δὲ τὸ Ε, χωρὶς τοῦ ΑΕΓ τριγώνου, τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ μετὰ τοῦ ΑΒΓ τμήματος. Κοινὸν ἀφῃρήσθω τὸ ΑΒΓ τμῆμα· λοιπὰ ἄρα τὰ ΑΕΜ, ΜΕΝ, ΝΕΞ, ΞΕΟ, ΟΕΓ τρίγωνα μετὰ τῶν ΑΜΚ, ΚΝΒ, ΒΞΛ, ΛΟΓ περιλειμμάτων μείζονα ἔσται τῆς κωνικῆς
25ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ. Ἀλλὰ τῶν μὲν εἰρημένων περιλειμμάτων μεῖζόν ἐστιν τὸ Θ χωρίον, τῶν δὲ ΑΕΜ,
ΜΕΝ, ΝΕΞ, ΞΕΟ, ΟΕΓ τριγώνων μείζονα ἐδείχθη τὰ ΑΕΗ,29

1

.

30

ΗΕΖ, ΖΕΓ τρίγωνα· πολλῷ ἄρα τὰ ΑΕΗ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ χωρίου, τουτέστι τὰ ΑΔΕ, ΔΕΓ τρίγωνα, μείζονά ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ εὐθειῶν.
5
ιαʹ. Ἐὰν ἐν ἐπιφανείᾳ ὀρθοῦ κυλίνδρου δύο εὐθεῖαι ὦσιν, ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡ μεταξὺ τῶν εὐθειῶν μείζων ἐστὶν τοῦ παραλληλογράμμου τοῦ περιεχομένου ὑπό τε τῶν ἐν τῇ ἐπιφανείᾳ τοῦ κυλίνδρου εὐθειῶν καὶ τῶν ἐπιζευ‐
10γνυουσῶν τὰ πέρατα αὐτῶν. Ἔστω κύλινδρος ὀρθός, οὗ βάσις μὲν ὁ ΑΒ κύκλος, ἀπεναντίον δὲ ὁ ΓΔ, καὶ ἐπεζεύχθωσαν αἱ ΑΓ, ΒΔ· λέγω ὅτι ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν μείζων ἐστὶν τοῦ ΑΓΒΔ παραλληλογράμμου. [Omitted graphic marker]
15Τετμήσθω γὰρ ἑκατέρα τῶν ΑΒ, ΓΔ δίχα κατὰ τὰ Ε, Ζ
σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΕ, ΕΒ, ΓΖ, ΖΔ. Καὶ ἐπεὶ30

1

.

31

αἱ ΑΕ, ΕΒ τῆς ΑΒ [διαμέτρου] μείζους εἰσίν, καί ἐστιν ἰσουψῆ τὰ παραλληλόγραμμα τὰ ἐπ’ αὐτῶν, μείζονα οὖν ἐστιν τὰ παραλληλόγραμμα, ὧν [αἱ] βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, τοῦ ΑΒΔΓ παραλληλογράμ‐
5μου. Τίνι ἄρα μείζονά ἐστιν; Ἔστω τῷ Η χωρίῳ. Τὸ δὴ Η χωρίον ἤτοι ἔλασσον τῶν ΑΕ, ΕΒ, ΓΖ, ΖΔ ἐπιπέδων ἐστὶ τμημάτων ἢ οὐκ ἔλασσον. [Omitted graphic marker] Ἔστω πρότερον μὴ ἔλασσον. Καὶ ἐπεὶ ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ
10ΑΕΒ, ΓΖΔ [τρίγωνα] πέρας ἔχει τὸ τοῦ ΑΓΒΔ παραλλη‐ λογράμμου ἐπίπεδον, ἀλλὰ καὶ ἡ συγκειμένη ἐπιφάνεια ἐκ τῶν παραλληλογράμμων, ὧν βάσεις μὲν ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, καὶ τὰ ΑΕΒ, ΓΖΔ [ἐπίπεδα] πέρας ἔχει τὸ τοῦ ΑΔΒΓ παραλληλογράμμου ἐπίπεδον,
15καὶ ἡ ἑτέρα τὴν ἑτέραν περιλαμβάνει, καὶ ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαί εἰσιν, μείζων οὖν ἐστιν ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ ΑΕΒ, ΓΖΔ ἐπίπεδα τμήματα τῆς συγκειμένης ἐπιφανείας
ἐκ τῶν παραλληλογράμμων, ὧν [αἱ] βάσεις μὲν αἱ ΑΕ, ΕΒ,31

1

.

32

ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, καὶ τῶν ΑΕΒ, ΓΖΔ τριγώνων. Κοινὰ ἀφῃρήσθω τὰ ΑΕΒ, ΓΖΔ τρίγωνα· λοιπὴ οὖν ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ ΑΕ, ΕΒ, ΓΖ, ΖΔ ἐπίπεδα τμήματα μείζονά
5ἐστι τῆς συγκειμένης ἐπιφανείας ἐκ τῶν παραλληλογράμ‐ μων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὰ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, ἴσα ἐστὶν τῷ ΑΓΒΔ παραλ‐ ληλογράμμῳ καὶ τῷ Η χωρίῳ· λοιπὴ ἄρα ἡ ἀποτεμνομένη
10κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν μείζων ἐστὶ τοῦ ΑΓΒΔ παραλληλογράμμου. Ἀλλὰ δὴ ἔστω ἔλασσον τὸ Η χωρίον τῶν ΑΕ, ΕΒ, ΓΖ, ΖΔ ἐπιπέδων τμημάτων. Καὶ τετμήσθω ἑκάστη τῶν ΑΕ, ΕΒ, ΓΖ, ΖΔ περιφερειῶν δίχα κατὰ τὰ Θ, Κ, Λ, Μ
15σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ [τῶν δὲ ΑΕ, ΕΒ, ΓΖ, ΖΔ ἄρα ἐπιπέδων τμημάτων ἀφαιρεῖται οὐκ ἔλασσον ἢ τὸ ἥμισυ τὰ ΑΘΕ, ΕΚΒ, ΓΛΖ, ΖΜΔ τρίγωνα]. Τούτου οὖν ἑξῆς γινομένου καταλειφθή‐ σεταί τινα τμήματα, ἃ ἔσται ἐλάσσονα τοῦ Η χωρίου.
20Καταλελείφθω καὶ ἔστω τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ. Ὁμοίως δὴ δείξομεν ὅτι τὰ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίν‐ δρῳ, μείζονα ἔσται τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Καὶ ἐπεὶ ἡ
25ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ ΑΕΒ, ΓΖΔ ἐπίπεδα τμήματα πέρας ἔχει τὸ τοῦ ΑΓΒΔ παραλληλογράμμου ἐπίπεδον, ἀλλὰ καὶ ἡ
συγκειμένη ἐπιφάνεια ἐκ τῶν παραλληλογράμμων, ὧν32

1

.

33

βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίν‐ δρῳ, καὶ τῶν ΑΘΕΚΒ, ΓΛΖΜΔ εὐθυγράμμων, κοινὰ ἀφῃρή‐ σθω τὰ ΑΘΕΚΒ, ΓΛΖΜΔ εὐθύγραμμα· λοιπὴ ἄρα ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ
5εὐθειῶν καὶ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ ἐπίπεδα τμήματα μείζονά ἐστιν τῆς συγκειμένης ἐπιφανείας ἐκ τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὰ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ
10κυλίνδρῳ, μείζονά ἐστιν τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ· καὶ ἡ ἀποτεμνομένη ἄρα κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ ἐπίπεδα τμήματα μείζονά ἐστιν τῶν παραλληλογράμμων,
15ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὰ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, ἴσα ἐστὶν τῷ ΑΓΔΒ παραλληλο‐ γράμμῳ καὶ τῷ Η χωρίῳ· καὶ ἡ ἀποτεμνομένη ἄρα κυλιν‐ δρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν καὶ τὰ ΑΘ, ΘΕ,
20ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ ἐπίπεδα τμήματα μείζονά ἐστιν τοῦ ΑΓΒΔ παραλληλογράμμου καὶ τοῦ Η χωρίου. Ἀφαι‐ ρεθέντα δὲ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, ΜΔ τμήματα τοῦ Η χωρίου ἐλάσσονα λοιπὴ ἄρα ἡ ἀποτεμνομένη κυλιν‐ δρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, ΒΔ εὐθειῶν μείζων ἐστὶν τοῦ
25ΑΓΒΔ παραλληλογράμμου.
ιβʹ. Ἐὰν ἐν ἐπιφανείᾳ κυλίνδρου τινὸς ὀρθοῦ δύο εὐθεῖαι
ὦσιν, ἀπὸ δὲ τῶν περάτων τῶν εὐθειῶν ἀχθῶσίν τινες33

1

.

34

ἐπιψαύουσαι τῶν κύκλων, οἵ εἰσιν βάσεις τοῦ κυλίνδρου, ἐν τῷ ἐπιπέδῳ αὐτῶν οὖσαι καὶ συμπέσωσιν, τὰ παραλλη‐ λόγραμμα τὰ περιεχόμενα ὑπό τε τῶν ἐπιψαυουσῶν καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονα ἔσται τῆς ἐπιφανείας
5τοῦ κυλίνδρου τῆς μεταξὺ τῶν εὐθειῶν τῶν ἐν τῇ ἐπιφανείᾳ τοῦ κυλίνδρου. Ἔστω κυλίνδρου τινὸς ὀρθοῦ βάσις ὁ ΑΒΓ κύκλος, καὶ ἔστωσαν ἐν τῇ ἐπιφανείᾳ αὐτοῦ δύο εὐθεῖαι, ὧν πέρατα τὰ Α, Γ, ἀπὸ δὲ τῶν Α, Γ ἤχθωσαν ἐπιψαύουσαι τοῦ κύκλου
10ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι καὶ συμπιπτέτωσαν κατὰ τὸ Η, νοείσθωσαν δὲ καὶ ἐν τῇ ἑτέρᾳ βάσει τοῦ κυλίνδρου ἀπὸ τῶν περάτων τῶν ἐν τῇ ἐπιφανείᾳ εὐθεῖαι ἠγμέναι ἐπιψαύου‐ σαι τοῦ κύκλου· δεικτέον ὅτι τὰ παραλληλόγραμμα τὰ περιεχόμενα ὑπὸ τῶν ἐπιψαυουσῶν καὶ τῶν πλευρῶν τοῦ
15κυλίνδρου μείζονά ἐστι τῆς κατὰ τὴν ΑΒΓ περιφέρειαν ἐπιφανείας τοῦ κυλίνδρου. [Omitted graphic marker] Ἤχθω γὰρ ἡ ΕΖ ἐπιψαύουσα, καὶ ἀπὸ τῶν Ε, Ζ σημείων
ἤχθωσάν τινες εὐθεῖαι παρὰ τὸν ἄξονα τοῦ κυλίνδρου34

1

.

35

ἕως [τῆς ἐπιφανείας] τῆς ἑτέρας βάσεως· τὰ δὴ παραλλη‐ λόγραμμα τὰ περιεχόμενα ὑπὸ τῶν ΑΗ, ΗΓ καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονά ἐστιν τῶν παραλληλο‐ γράμμων τῶν περιεχομένων ὑπό τε τῶν ΑΕ, ΕΖ, ΖΓ καὶ
5τῆς πλευρᾶς τοῦ κυλίνδρου [ἐπεὶ γὰρ αἱ ΕΗ, ΗΖ τῆς ΕΖ μείζους εἰσίν, κοιναὶ προσκείσθωσαν αἱ ΑΕ, ΖΓ]. Ὧι δὴ μείζονά ἐστιν, ἔστω τὸ Κ χωρίον. Τοῦ δὴ Κ χωρίου τὸ ἥμισυ ἤτοι μεῖζόν ἐστι τῶν σχημάτων τῶν περιεχομένων ὑπὸ τῶν ΑΕ, ΕΖ, ΖΓ εὐθειῶν καὶ τῶν ΑΔ, ΔΒ, ΒΘ, ΘΓ
10περιφερειῶν ἢ οὔ. Ἔστω πρότερον μεῖζον. Τῆς δὴ ἐπιφα‐ νείας τῆς συγκειμένης ἔκ τε τῶν παραλληλογράμμων τῶν κατὰ τὰς ΑΕ, ΕΖ, ΖΓ καὶ τοῦ ΑΕΖΓ τραπεζίου καὶ τοῦ κατεναντίον αὐτοῦ ἐν τῇ ἑτέρα βάσει τοῦ κυλίνδρου πέρας ἐστὶν ἡ περίμετρος τοῦ παραλληλογράμμου τοῦ κατὰ τὴν
15ΑΓ. Ἔστιν δὲ καὶ τῆς ἐπιφανείας τῆς συγκειμένης ἐκ τῆς ἐπιφανείας τοῦ κυλίνδρου τῆς κατὰ τὴν ΑΒΓ περιφέρειαν καὶ τῶν τμημάτων τοῦ τε ΑΒΓ καὶ τοῦ ἀπεναντίον αὐτοῦ πέρας ἡ αὐτὴ περίμετρος· αἱ οὖν εἰρημέναι ἐπιφάνειαι τὸ αὐτὸ πέρας ἔχουσαι τυγχάνουσιν, ὅπερ ἐστὶν ἐν ἐπιπέδῳ,
20καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καί τινα μὲν περιλαμβάνει ἡ ἑτέρα αὐτῶν, τινὰ δὲ κοινὰ ἔχουσιν· ἐλάσσων ἄρα ἐστὶν ἡ περιλαμβανομένη. Ἀφαιρεθέντων οὖν κοινῶν τοῦ τε ΑΒΓ τμήματος καὶ τοῦ ἀπεναντίον αὐτοῦ ἐλάσσων ἐστὶν ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡ κατὰ τὴν ΑΒΓ
25περιφέρειαν τῆς συγκειμένης ἐπιφανείας ἔκ τε τῶν παραλ‐ ληλογράμμων τῶν κατὰ τὰς ΑΕ, ΕΖ, ΖΓ καὶ τῶν σχημάτων τῶν ΑΕΒ, ΒΖΓ καὶ τῶν ἀπεναντίον αὐτῶν. Αἱ δὲ τῶν
εἰρημένων παραλληλογράμμων ἐπιφάνειαι μετὰ τῶν εἰρη‐35

1

.

36

μένων σχημάτων ἐλάττους εἰσὶν τῆς ἐπιφανείας τῆς συγκειμένης ἔκ τε τῶν παραλληλογράμμων τῶν κατὰ τὰς ΑΗ, ΗΓ [μετὰ γὰρ τοῦ Κ μείζονος ὄντος τῶν σχημάτων ἴσαι ἦσαν αὐτοῖς]· δῆλον οὖν ὅτι τὰ παραλληλόγραμμα
5τὰ περιεχόμενα ὑπὸ τῶν ΑΗ, ΓΗ καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονά ἐστι τῆς ἐπιφανείας τοῦ κυλίνδρου τῆς κατὰ τὴν ΑΒΓ περιφέρειαν. Εἰ δὲ μή ἐστιν μεῖζον τὸ ἥμισυ τοῦ Κ χωρίου τῶν εἰρη‐ μένων σχημάτων, ἀχθήσονται εὐθεῖαι ἐπιψαύουσαι τοῦ
10τμήματος, ὥστε γενέσθαι τὰ περιλειπόμενα σχήματα ἐλάσσονα τοῦ ἡμίσους τοῦ Κ, καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς ἔμπροσθεν δειχθήσεται.
13t〈ΠΟΡΙΣΜΑ.〉
14Τούτων δὴ δεδειγμένων φανερὸν [ἐπὶ μὲν τῶν προ‐
15ειρημένων] ὅτι, ἐὰν εἰς κῶνον ἰσοσκελῆ πυραμὶς ἐγ‐ γραφῇ, ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἐλάσσων ἐστὶ τῆς κωνικῆς ἐπιφανείας [ἕκαστον γὰρ τῶν περιεχόντων τὴν πυραμίδα τριγώνων ἔλασσόν ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν τοῦ τριγώνου
20πλευρῶν· ὥστε καὶ ὅλη 〈ἡ〉 ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κώνου χωρὶς τῆς βάσεως], καὶ ὅτι, ἐὰν περὶ κῶνον ἰσοσκελῆ πυραμὶς περιγραφῇ, ἡ ἐπιφάνεια τῆς πυρα‐ μίδος χωρὶς τῆς βάσεως μείζων ἐστὶν τῆς ἐπιφανείας
25τοῦ κώνου χωρὶς τῆς βάσεως [κατὰ τὸ συνεχὲς ἐκείνῳ].36

1

.

37

(1t)

〈ΠΟΡΙΣΜΑ.〉
2 Φανερὸν δὲ ἐκ τῶν ἀποδεδειγμένων ὅτι τε, ἐὰν εἰς κύλινδρον ὀρθὸν πρίσμα ἐγγραφῇ, ἡ ἐπιφάνεια τοῦ πρίσματος ἡ ἐκ τῶν παραλληλογράμμων συγκειμένη
5ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κυλίνδρου χωρὶς τῆς βάσεως [ἔλασσον γὰρ ἕκαστον παραλληλόγραμμον τοῦ πρίσματός ἐστι τῆς καθ’ αὑτὸ τοῦ κυλίνδρου ἐπιφα‐ νείας], καὶ ὅτι, ἐὰν περὶ κύλινδρον ὀρθὸν πρίσμα περι‐ γραφῇ, ἡ ἐπιφάνεια τοῦ πρίσματος ἡ ἐκ τῶν παραλ‐
10ληλογράμμων συγκειμένη μείζων ἐστὶ τῆς ἐπιφανείας τοῦ κυλίνδρου χωρὶς τῆς βάσεως.
ιγʹ. Παντὸς κυλίνδρου ὀρθοῦ ἡ ἐπιφάνεια χωρὶς τῆς βάσεως ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου μέσον
15λόγον ἔχει τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς δια‐ μέτρου τῆς βάσεως τοῦ κυλίνδρου. Ἔστω κυλίνδρου τινὸς ὀρθοῦ βάσις ὁ Α κύκλος, καὶ ἔστω τῇ μὲν διαμέτρῳ τοῦ Α κύκλου ἴση ἡ ΓΔ, τῇ δὲ πλευρᾷ τοῦ κυλίνδρου ἡ ΕΖ, ἐχέτω δὲ μέσον λόγον
20τῶν ΔΓ, ΕΖ ἡ Η, καὶ κείσθω κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ Η, ὁ Β· δεικτέον ὅτι ὁ Β κύκλος
ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κυλίνδρου χωρὶς τῆς βάσεως.37

1

.

38

[Omitted graphic marker] Εἰ γὰρ μή ἐστιν ἴσος, ἤτοι μείζων ἐστὶ ἢ ἐλάσσων. Ἔστω πρότερον, εἰ δυνατόν, ἐλάσσων. Δύο δὴ μεγεθῶν ὄντων ἀνίσων τῆς τε ἐπιφανείας τοῦ κυλίνδρου καὶ τοῦ Β κύκλου δυνατόν ἐστιν εἰς τὸν Β κύκλον ἰσόπλευρον
5πολύγωνον ἐγγράψαι καὶ ἄλλο περιγράψαι, ὥστε τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ κυλίνδρου πρὸς τὸν Β κύκλον. Νοείσθω δὴ περιγεγραμμένον καὶ ἐγγεγραμμένον, καὶ περὶ τὸν Α κύκλον περιγεγράφθω εὐθύγραμμον ὅμοιον τῷ
10περὶ τὸν Β περιγεγραμμένῳ, καὶ ἀναγεγράφθω ἀπὸ τοῦ εὐθυγράμμου πρίσμα· ἔσται δὴ περὶ τὸν κύλινδρον περιγεγραμμένον. Ἔστω δὲ καὶ τῇ περιμέτρῳ τοῦ εὐθυγράμ‐ μου τοῦ περὶ τὸν Α κύκλον ἴση ἡ ΚΔ καὶ τῇ ΚΔ ἴση ἡ ΔΖ, τῆς δὲ ΓΔ ἡμίσεια ἔστω ἡ ΓΤ· ἔσται δὴ τὸ ΚΔΤ τρίγωνον
15ἴσον τῷ περιγεγραμμένῳ εὐθυγράμμῳ περὶ τὸν Α κύ‐ κλον [ἐπειδὴ βάσιν μὲν ἔχει τῇ περιμέτρῳ ἴσην, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τοῦ Α κύκλου], τὸ δὲ ΕΛ παραλληλόγραμμον τῇ ἐπιφανείᾳ τοῦ πρίσματος τοῦ
περὶ τὸν κύλινδρον περιγεγραμμένου [ἐπειδὴ περιέχεται38

1

.

39

ὑπὸ τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς ἴσης τῇ περι‐ μέτρῳ τῆς βάσεως τοῦ πρίσματος]. Κείσθω δὴ τῇ ΕΖ ἴση ἡ ΕΡ· ἴσον ἄρα ἐστὶν τὸ ΖΡΛ τρίγωνον τῷ ΕΛ παραλ‐ ληλογράμμῳ, ὥστε καὶ τῇ ἐπιφανείᾳ τοῦ πρίσματος.
5Καὶ ἐπεὶ ὅμοιά ἐστιν τὰ εὐθύγραμμα τὰ περὶ τοὺς Α, Β κύκλους περιγεγραμμένα, τὸν αὐτὸν ἕξει λόγον [τὰ εὐθύγραμμα], ὅνπερ αἱ ἐκ τῶν κέντρων δυνάμει· ἕξει ἄρα τὸ ΚΤΔ τρίγωνον πρὸς τὸ περὶ τὸν Β κύκλον εὐθύγραμ‐ μον λόγον, ὃν ἡ ΤΔ πρὸς Η δυνάμει [αἱ γὰρ ΤΔ, Η ἴσαι
10εἰσὶν ταῖς ἐκ τῶν κέντρων]. Ἀλλ’ ὃν ἔχει λόγον ἡ ΤΔ πρὸς Η δυνάμει, τοῦτον ἔχει τὸν λόγον ἡ ΤΔ πρὸς ΡΖ μήκει [ἡ γὰρ Η τῶν ΤΔ, ΡΖ μέση ἐστὶ ἀνάλογον διὰ τὸ καὶ τῶν ΓΔ, ΕΖ· πῶς δὲ τοῦτο; ἐπεὶ γὰρ ἴση ἐστὶν ἡ μὲν ΔΤ τῇ ΤΓ, ἡ δὲ ΡΕ τῇ ΕΖ, διπλασία ἄρα ἐστὶν ἡ ΓΔ τῆς
15ΤΔ, καὶ ἡ ΡΖ τῆς ΡΕ· ἔστιν ἄρα ὡς ἡ ΔΓ πρὸς ΔΤ, οὕτως ἡ ΡΖ πρὸς ΖΕ. Τὸ ἄρα ὑπὸ τῶν ΓΔ, ΕΖ ἴσον ἐστὶν τῷ ὑπὸ τῶν ΤΔ, ΡΖ. Τῷ δὲ ὑπὸ τῶν ΓΔ, ΕΖ ἴσον ἐστὶν τὸ ἀπὸ Η· καὶ τῷ ὑπὸ τῶν ΤΔ, ΡΖ ἄρα ἴσον ἐστὶ τὸ ἀπὸ τῆς Η· ἔστιν ἄρα ὡς ἡ ΤΔ πρὸς Η, οὕτως ἡ Η πρὸς ΡΖ. Ἔστιν
20ἄρα ὡς ἡ ΤΔ πρὸς ΡΖ, τὸ ἀπὸ τῆς ΤΔ πρὸς τὸ ἀπὸ τῆς Η· ἐὰν γὰρ τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔστιν ὡς ἡ πρώτη πρὸς τὴν τρίτην, τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας εἶδος τὸ ὅμοιον καὶ ὁμοίως ἀναγε‐ γραμμένον]· ὃν δὲ λόγον ἔχει ἡ ΤΔ πρὸς ΡΖ μήκει, τοῦτον
25ἔχει τὸ ΚΤΔ τρίγωνον πρὸς τὸ ΡΛΖ [ἐπειδήπερ ἴσαι εἰσὶν αἱ ΚΔ, ΛΖ]· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ ΚΤΔ τρίγωνον πρὸς τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον περιγεγραμ‐ μένον, ὅνπερ τὸ ΤΚΔ τρίγωνον πρὸς τὸ ΡΖΛ τρίγωνον.
Ἴσον ἄρα ἐστὶν τὸ ΖΛΡ τρίγωνον τῷ περὶ τὸν Β κύκλον39

1

.

40

περιγεγραμμένῳ εὐθυγράμμῳ· ὥστε καὶ ἡ ἐπιφάνεια τοῦ πρίσματος τοῦ περὶ τὸν Α κύλινδρον περιγεγραμ‐ μένου τῷ εὐθυγράμμῳ τῷ περὶ τὸν Β κύκλον ἴση ἐστίν. Καὶ ἐπεὶ ἐλάσσονα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ
5τὸν Β κύκλον πρὸς τὸ ἐγγεγραμμένον ἐν τῷ κύκλῳ τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ Α κυλίνδρου πρὸς τὸν Β κύκλον, ἐλάσσονα λόγον ἕξει καὶ ἡ ἐπιφάνεια τοῦ πρίσματος τοῦ περὶ τὸν κύλινδρον περιγεγραμμένου πρὸς τὸ εὐθύ‐ γραμμον τὸ ἐν τῷ κύκλῳ τῷ Β ἐγγεγραμμένον ἤπερ ἡ
10ἐπιφάνεια τοῦ κυλίνδρου πρὸς τὸν Β κύκλον· καὶ ἐναλλάξ· ὅπερ ἀδύνατον [ἡ μὲν γὰρ ἐπιφάνεια τοῦ πρίσματος τοῦ περιγεγραμμένου περὶ τὸν κύλινδρον μείζων οὖσα δέδεικται τῆς ἐπιφανείας τοῦ κυλίνδρου, τὸ δὲ ἐγγεγραμμένον εὐθύγραμμον ἐν τῷ Β κύκλῳ ἔλασσόν ἐστιν τοῦ Β κύκλου].
15Οὐκ ἄρα ἐστὶν ὁ Β κύκλος ἐλάσσων τῆς ἐπιφανείας τοῦ κυλίνδρου. Ἔστω δή, εἰ δυνατόν, μείζων. Πάλιν δὴ νοείσθω εἰς τὸν Β κύκλον εὐθύγραμμον ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον, ὥστε τὸ περιγεγραμμένον πρὸς τὸ
20ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν ἢ τὸν Β κύκλον πρὸς τὴν ἐπιφάνειαν τοῦ κυλίνδρου, καὶ ἐγγεγράφθω εἰς τὸν Α κύκλον πολύγωνον ὅμοιον τῷ εἰς τὸν Β κύκλον ἐγγεγραμμένῳ, καὶ πρίσμα ἀναγεγράφθω ἀπὸ τοῦ ἐν τῷ κύκλῳ ἐγγεγραμμένου πολυγώνου· καὶ πάλιν ἡ
25ΚΔ ἴση ἔστω τῇ περιμέτρῳ τοῦ εὐθυγράμμου τοῦ ἐν τῷ Α κύκλῳ ἐγγεγραμμένου, καὶ ἡ ΖΛ ἴση αὐτῇ ἔστω. Ἔσται δὴ τὸ μὲν ΚΤΔ τρίγωνον μεῖζον τοῦ εὐθυγράμμου τοῦ
ἐν τῷ Α κύκλῳ ἐγγεγραμμένου [διότι βάσιν μὲν ἔχει τὴν40

1

.

41

περίμετρον αὐτοῦ, ὕψος δὲ μεῖζον τῆς ἀπὸ τοῦ κέντρου {πλευρᾶς} ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου ἀγομένης καθέτου], τὸ δὲ ΕΛ παραλληλόγραμμον ἴσον τῇ ἐπιφανείᾳ τοῦ πρίσματος τῇ ἐκ τῶν παραλληλογράμμων συγκει‐
5μένῃ [διότι περιέχεται ὑπὸ τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς ἴσης τῇ περιμέτρῳ τοῦ εὐθυγράμμου, ὅ ἐστιν βάσις τοῦ πρίσματος]· ὥστε καὶ τὸ ΡΛΖ τρίγωνον ἴσον ἐστὶ τῇ ἐπιφανείᾳ τοῦ πρίσματος. Καὶ ἐπεὶ ὅμοιά ἐστι τὰ εὐθύγραμμα τὰ ἐν τοῖς Α, Β κύκλοις ἐγγεγραμμένα,
10τὸν αὐτὸν ἔχει λόγον πρὸς ἄλληλα ὃν αἱ ἐκ τῶν κέντρων αὐτῶν δυνάμει. Ἔχει δὲ καὶ τὰ ΚΤΔ, ΖΡΔ τρίγωνα πρὸς ἄλληλα λόγον, ὃν αἱ ἐκ τῶν κέντρων τῶν κύκλων δυνάμει· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ εὐθύγραμμον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον πρὸς τὸ εὐθύγραμμον τὸ ἐν τῷ Β
15ἐγγεγραμμένον καὶ τὸ ΚΤΔ τρίγωνον πρὸς τὸ ΛΖΡ τρίγωνον. Ἔλασσον δέ ἐστι τὸ εὐθύγραμμον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον τοῦ ΚΤΔ τριγώνου· ἔλασσον ἄρα καὶ τὸ εὐθύγραμμον τὸ ἐν τῷ Β κύκλῳ ἐγγεγραμμένον τοῦ ΖΡΛ τριγώνου· ὥστε καὶ τῆς ἐπιφανείας τοῦ πρίσματος
20τοῦ ἐν τῷ κυλίνδρῳ ἐγγεγραμμένου· ὅπερ ἀδύνατον [ἐπεὶ γὰρ ἐλάσσονα λόγον ἔχει τὸ περιγεγραμμένον εὐθύγραμμον περὶ τὸν Β κύκλον πρὸς τὸ ἐγγεγραμμένον ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κυλίνδρου, καὶ ἐναλλάξ, μεῖζον δέ ἐστι τὸ περιγεγραμμένον περὶ τὸν Β
25κύκλον τοῦ Β κύκλου, μεῖζον ἄρα ἐστὶν τὸ ἐγγεγραμμένον ἐν τῷ Β κύκλῳ τῆς ἐπιφανείας τοῦ κυλίνδρου· ὥστε καὶ τῆς ἐπιφανείας τοῦ πρίσματος]. Οὐκ ἄρα μείζων ἐστὶν ὁ Β κύκλος τῆς ἐπιφανείας τοῦ κυλίνδρου. Ἐδείχθη δὲ
ὅτι οὐδὲ ἐλάσσων· ἴσος ἄρα ἐστίν.41

1

.

42

ιδʹ. Παντὸς κώνου ἰσοσκελοῦς χωρὶς τῆς βάσεως ἡ ἐπι‐ φάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου μέσον λόγον ἔχει τῆς πλευρᾶς τοῦ κώνου καὶ τῆς ἐκ τοῦ κέντρου τοῦ
5κύκλου, ὅς ἐστιν βάσις τοῦ κώνου. Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ Α κύκλος, ἡ δὲ ἐκ τοῦ κέντρου ἔστω ἡ Γ, τῇ δὲ πλευρᾷ τοῦ κώνου ἔστω ἴση ἡ Δ, τῶν δὲ Γ, Δ μέση ἀνάλογον ἡ Ε, ὁ δὲ Β κύκλος ἐχέτω τὴν ἐκ τοῦ κέντρου τῇ Ε ἴσην· λέγω ὅτι ὁ Β κύκλος
10ἐστὶν ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου χωρὶς τῆς βάσεως. [Omitted graphic marker] Εἰ γὰρ μή ἐστιν ἴσος, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω πρότερον ἐλάσσων. Ἔστι δὴ δύο μεγέθη ἄνισα ἥ τε ἐπιφάνεια τοῦ κώνου καὶ ὁ Β κύκλος, καὶ μείζων ἡ ἐπιφάνεια τοῦ κώνου· δυνατὸν ἄρα εἰς τὸν Β κύκλον
15πολύγωνον ἰσόπλευρον ἐγγράψαι καὶ ἄλλο περιγράψαι ὅμοιον τῷ ἐγγεγραμμένῳ, ὥστε τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον. Νοείσθω δὴ καὶ περὶ τὸν Α κύκλον πολύγωνον περιγεγραμμένον
20ὅμοιον τῷ περὶ τὸν Β κύκλον περιγεγραμμένῳ, καὶ ἀπὸ
τοῦ περὶ τὸν Α κύκλον περιγεγραμμένου πολυγώνου42

1

.

43

πυραμὶς ἀνεστάτω ἀναγεγραμμένη τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ. Ἐπεὶ οὖν ὅμοιά ἐστιν τὰ πολύγωνα τὰ περὶ τοὺς Α, Β κύκλους περιγεγραμμένα, τὸν αὐτὸν ἔχει λόγον πρὸς ἄλληλα, ὃν αἱ ἐκ τοῦ κέντρου δυνάμει
5πρὸς ἀλλήλας, τουτέστιν ὃν ἔχει ἡ Γ πρὸς Ε δυνάμει, τουτέστιν ἡ Γ πρὸς Δ μήκει. Ὃν δὲ λόγον ἔχει ἡ Γ πρὸς Δ μήκει, τοῦτον ἔχει τὸ περιγεγραμμένον πολύγωνον περὶ τὸν Α κύκλον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς περιγεγραμμένης περὶ τὸν κῶνον [ἡ μὲν γὰρ Γ ἴση
10ἐστὶ τῇ ἀπὸ τοῦ κέντρου καθέτῳ ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου, ἡ δὲ Δ τῇ πλευρᾷ τοῦ κώνου· κοινὸν δὲ ὕψος ἡ περίμετρος τοῦ πολυγώνου πρὸς τὰ ἡμίση τῶν ἐπιφανειῶν]· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ τὸν Α κύκλον πρὸς τὸ εὐθύγραμμον τὸ περὶ τὸν
15Β κύκλον καὶ αὐτὸ τὸ εὐθύγραμμον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς περιγεγραμμένης περὶ τὸν κῶνον· ὥστε ἴση ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος τῷ εὐθυγράμμῳ τῷ περὶ τὸν Β κύκλον περιγεγραμμένῳ. Ἐπεὶ οὖν ἐλάσσονα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον περιγε‐
20γραμμένον πρὸς τὸ ἐγγεγραμμένον ἤπερ ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον, ἐλάσσονα λόγον ἕξει ἡ ἐπιφάνεια τῆς πυραμίδος τῆς περὶ τὸν κῶνον περιγεγραμ‐ μένης πρὸς τὸ εὐθύγραμμον τὸ ἐν τῷ Β κύκλῳ ἐγγεγραμ‐ μένον ἤπερ ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον·
25ὅπερ ἀδύνατον [ἡ μὲν γὰρ ἐπιφάνεια τῆς πυραμίδος μείζων οὖσα δέδεικται τῆς ἐπιφανείας τοῦ κώνου, τὸ δὲ ἐγγεγραμμένον εὐθύγραμμον ἐν τῷ Β κύκλῳ ἔλασ‐ σον ἔσται τοῦ Β κύκλου]. Οὐκ ἄρα ὁ Β κύκλος ἐλάσσων ἔσται τῆς ἐπιφανείας τοῦ κώνου.
30Λέγω δὴ ὅτι οὐδὲ μείζων. Εἰ γὰρ δυνατόν ἐστιν, ἔστω43

1

.

44

μείζων. Πάλιν δὴ νοείσθω εἰς τὸν Β κύκλον πολύγωνον ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον, ὥστε τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ
5κώνου, καὶ εἰς τὸν Α κύκλον νοείσθω ἐγγεγραμμένον πολύγωνον ὅμοιον τῷ εἰς τὸν Β κύκλον ἐγγεγραμμένῳ, καὶ ἀναγεγράφθω ἀπ’ αὐτοῦ πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ. Ἐπεὶ οὖν ὅμοιά ἐστι τὰ ἐν τοῖς Α, Β κύκλοις ἐγγεγραμμένα, τὸν αὐτὸν ἕξει λόγον πρὸς ἄλληλα,
10ὃν αἱ ἐκ τῶν κέντρων δυνάμει πρὸς ἀλλήλας· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ πολύγωνον πρὸς τὸ πολύγωνον καὶ ἡ Γ πρὸς τὴν Δ μήκει. Ἡ δὲ Γ πρὸς τὴν Δ μείζονα λόγον ἔχει ἢ τὸ πολύγωνον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς ἐγγεγραμμένης
15εἰς τὸν κῶνον [ἡ γὰρ ἐκ τοῦ κέντρου τοῦ Α κύκλου πρὸς τὴν πλευρὰν τοῦ κώνου μείζονα λόγον ἔχει ἤπερ ἡ ἀπὸ τοῦ κέντρου ἀγομένη κάθετος ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου πρὸς τὴν ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου κάθετον ἀγομένην ἀπὸ τῆς κορυφῆς τοῦ κώνου]· μείζονα
20ἄρα λόγον ἔχει τὸ πολύγωνον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμ‐ μένον πρὸς τὸ πολύγωνον τὸ ἐν τῷ Β ἐγγεγραμμένον ἢ αὐτὸ τὸ πολύγωνον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος· μείζων ἄρα ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος τοῦ ἐν τῷ Β πολυγώνου ἐγγεγραμμένου. Ἐλάσσονα δὲ λόγον ἔχει
25τὸ πολύγωνον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κώνου· πολλῷ ἄρα τὸ πολύγωνον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον πρὸς τὴν ἐπιφάνειαν τῆς πυρα‐ μίδος τῆς ἐν τῷ κώνῳ ἐγγεγραμμένης ἐλάσσονα λόγον
30ἔχει ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κώνου· ὅπερ44

1

.

45

ἀδύνατον [τὸ μὲν γὰρ περιγεγραμμένον πολύγωνον μεῖζόν ἐστιν τοῦ Β κύκλου, ἡ δὲ ἐπιφάνεια τῆς πυραμίδος τῆς ἐν τῷ κώνῳ ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κώνου]. Οὐκ ἄρα οὐδὲ μείζων ἐστὶν ὁ κύκλος τῆς ἐπιφανείας τοῦ
5κώνου. Ἐδείχθη δὲ ὅτι οὐδὲ ἐλάσσων· ἴσος ἄρα.
ιεʹ. Παντὸς κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια πρὸς τὴν βάσιν τὸν αὐτὸν ἔχει λόγον, ὃν ἡ πλευρὰ τοῦ κώνου πρὸς τὴν ἐκ τοῦ κέντρου τῆς βάσεως τοῦ κώνου.
10 Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ Α κύκλος, ἔστω δὲ τῇ μὲν ἐκ τοῦ κέντρου τοῦ Α ἴση ἡ Β, τῇ δὲ πλευρᾷ τοῦ κώνου ἡ Γ· δεικτέον ὅτι τὸν αὐτὸν ἔχει λόγον ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Α κύκλον καὶ ἡ Γ πρὸς τὴν Β. [Omitted graphic marker]
15 Εἰλήφθω γὰρ τῶν Β, Γ μέση ἀνάλογον ἡ Ε, καὶ ἐκκείσθω κύκλος ὁ Δ ἴσην ἔχων τὴν ἐκ τοῦ κέντρου τῇ Ε· ὁ Δ ἄρα κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου [τοῦτο γὰρ ἐδείχθη ἐν τῷ πρὸ τούτου]. Ἐδείχθη δὲ ὁ Δ κύκλος πρὸς τὸν Α κύκλον λόγον ἔχων τὸν αὐτὸν τῷ τῆς Γ πρὸς
20Β μήκει [ἑκάτερος γὰρ ὁ αὐτός ἐστι τῷ τῆς Ε πρὸς Β δυνάμει διὰ τὸ τοὺς κύκλους πρὸς ἀλλήλους εἶναι ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα πρὸς ἄλληλα, ὁμοίως
δὲ καὶ τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν κύκλων· εἰ γὰρ45

1

.

46

αἱ διάμετροι, καὶ τὰ ἡμίση, τουτέστιν αἱ ἐκ τῶν κέντρων· ταῖς δὲ ἐκ τῶν κέντρων ἴσαι εἰσὶν αἱ Β, Ε]. Δῆλον οὖν ὅτι ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Α κύκλον τὸν αὐτὸν ἔχει λόγον, ὃν ἡ Γ πρὸς Β μήκει.
5
ιϛʹ. Ἐὰν κῶνος ἰσοσκελὴς ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων ἐπιφανείᾳ ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου μέσον λόγον ἔχει τῆς τε πλευρᾶς τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων
10ἐπιπέδων καὶ τῆς ἴσης ἀμφοτέραις ταῖς ἐκ τῶν κέντρων τῶν κύκλων τῶν ἐν τοῖς παραλλήλοις ἐπιπέδοις. Ἔστω κῶνος, οὗ τὸ διὰ τοῦ ἄξονος τρίγωνον ἴσον τῷ ΑΒΓ, καὶ τετμήσθω παραλλήλῳ ἐπιπέδῳ τῇ βάσει, καὶ ποιείτω τομὴν ΔΕ, ἄξων δὲ τοῦ κώνου ἔστω ὁ ΒΗ,
15κύκλος δέ τις ἐκκείσθω, οὗ ἡ ἐκ τοῦ κέντρου μέση ἀνά‐ λογόν ἐστι τῆς τε ΑΔ καὶ συναμφοτέρου τῆς ΔΖ, ΗΑ, ἔστω δὲ κύκλος ὁ Θ· λέγω ὅτι ὁ Θ κύκλος ἴσος ἐστὶ τῇ
ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΔΕ, ΑΓ. [Omitted graphic marker]46

1

.

47

Ἐκκείσθωσαν γὰρ κύκλοι οἱ Λ, Κ, καὶ τοῦ μὲν Κ κύκλου ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ ὑπὸ ΒΔΖ, τοῦ δὲ Λ ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ ὑπὸ ΒΑΗ· ὁ μὲν ἄρα Λ κύκλος ἴσος ἐστὶν τῇ ἐπιφανείᾳ τοῦ ΑΒΓ κώνου, ὁ δὲ Κ κύκλος
5ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΔΕΒ. Καὶ ἐπεὶ τὸ ὑπὸ τῶν ΒΑ, ΑΗ ἴσον ἐστὶ τῷ τε ὑπὸ τῶν ΒΔ, ΔΖ καὶ τῷ ὑπὸ τῆς ΑΔ καὶ συναμφοτέρου τῆς ΔΖ, ΑΗ διὰ τὸ παράλληλον εἶναι τὴν ΔΖ τῇ ΑΗ, ἀλλὰ τὸ μὲν ὑπὸ ΑΒ, ΑΗ δύναται ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου, τὸ δὲ ὑπὸ ΒΔ, ΔΖ δύναται
10ἡ ἐκ τοῦ κέντρου τοῦ Κ κύκλου, τὸ δὲ ὑπὸ τῆς ΔΑ καὶ συναμφοτέρου τῆς ΔΖ, ΑΗ δύναται ἡ ἐκ τοῦ κέντρου τοῦ Θ, τὸ ἄρα ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον ἐστὶ τοῖς ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Κ, Θ κύκλων· ὥστε καὶ ὁ Λ κύκλος ἴσος ἐστὶ τοῖς Κ, Θ κύκλοις. Ἀλλ’ ὁ
15μὲν Λ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΒΑΓ κώνου, ὁ δὲ Κ τῇ ἐπιφανείᾳ τοῦ ΔΒΕ κώνου· λοιπὴ ἄρα ἡ ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν ΔΕ, ΑΓ ἴση ἐστὶ τῷ Θ κύκλῳ. [Ἔστω παραλληλόγραμμον τὸ ΒΑΗ, καὶ διάμετρος
20αὐτοῦ ἔστω ἡ ΒΗ. Τετμήσθω ἡ ΒΑ πλευρά, ὡς ἔτυχεν, κατὰ τὸ Δ, καὶ διὰ τοῦ Δ ἤχθω παράλληλος τῇ ΑΗ ἡ ΔΘ, διὰ δὲ τοῦ Ζ τῇ ΒΑ ἡ ΚΛ· λέγω ὅτι τὸ ὑπὸ ΒΑΗ ἴσον ἐστὶ τῷ τε ὑπὸ ΒΔΖ καὶ τῷ ὑπὸ ΔΑ καὶ συναμφοτέρου
τῆς ΔΖ, ΑΗ. [Omitted graphic marker]47

1

.

48

Ἐπεὶ γὰρ τὸ μὲν ὑπὸ ΒΑΗ ὅλον ἐστὶ τὸ ΒΗ, τὸ δὲ ὑπὸ ΒΔΖ τὸ ΒΖ, τὸ δὲ ὑπὸ ΔΑ καὶ συναμφοτέρου τῆς ΔΖ, ΑΗ ὁ ΜΝΞ γνώμων· τὸ μὲν γὰρ ὑπὸ ΔΑΗ ἴσον ἐστὶν τῷ ΚΗ διὰ τὸ ἴσον εἶναι τὸ ΚΘ παραπλήρωμα τῷ
5ΔΛ παραπληρώματι, τὸ δὲ ὑπὸ ΔΑ, ΔΖ τῷ ΔΛ· ὅλον ἄρα τὸ ΒΗ, ὅπερ ἐστὶν τὸ ὑπὸ ΒΑΗ, ἴσον ἐστὶ τῷ τε ὑπὸ ΒΔΖ καὶ τῷ ΜΝΞ γνώμονι, ὅς ἐστιν ἴσος τῷ ὑπὸ ΔΑ καὶ συναμφοτέρου τῆς ΑΗ, ΔΖ].
9tΛΗΜΜΑΤΑ.
10 αʹ. Οἱ κῶνοι οἱ ἴσον ὕψος ἔχοντες τὸν αὐτὸν ἔχουσι λόγον ταῖς βάσεσιν· καὶ οἱ ἴσας ἔχοντες βάσεις τὸν αὐτὸν ἔχουσι λόγον τοῖς ὕψεσιν. βʹ. Ἐὰν κύλινδρος ἐπιπέδῳ τμηθῇ παρὰ τὴν βάσιν, ἔστιν, ὡς ὁ κύλινδρος πρὸς τὸν κύλινδρον, ὁ ἄξων πρὸς τὸν
15ἄξονα. γʹ. Τοῖς δὲ κυλίνδροις ἐν τῷ αὐτῷ λόγῳ εἰσὶν οἱ κῶνοι οἱ ἔχοντες τὰς αὐτὰς βάσεις τοῖς κυλίνδροις. δʹ. Καὶ τῶν ἴσων κώνων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· καὶ ὧν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν,
20ἴσοι εἰσίν. εʹ. Καὶ οἱ κῶνοι, ὧν αἱ διάμετροι τῶν βάσεων τὸν αὐτὸν λόγον ἔχουσιν τοῖς ἄξοσιν [τουτέστιν τοῖς ὕψεσι], πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶν τῶν ἐν ταῖς βάσεσι διαμέτρων.
25Ταῦτα δὲ πάντα ὑπὸ τῶν πρότερον ἀπεδείχθη.48

1

.

49

ιζʹ. Ἐὰν ὦσιν δύο κῶνοι ἰσοσκελεῖς, ἡ δὲ τοῦ ἑτέρου κώνου ἐπιφάνεια ἴση ᾖ τῇ τοῦ ἑτέρου βάσει, ἡ δὲ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ τὴν πλευρὰν τοῦ κώνου κάθετος ἀγομένη
5τῷ ὕψει ἴση ᾖ, ἴσοι ἔσονται οἱ κῶνοι. Ἔστωσαν δύο κῶνοι ἰσοσκελεῖς οἱ ΑΒΓ, ΔΕΖ, καὶ τοῦ ΑΒΓ ἡ μὲν βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΔΕΖ, τὸ δὲ ὕψος τὸ ΑΗ ἴσον ἔστω τῇ ἀπὸ τοῦ κέντρου τῆς βάσεως τοῦ Θ ἐπὶ μίαν πλευρὰν τοῦ κώνου, οἷον ἐπὶ τὴν ΔΕ,
10καθέτῳ ἠγμένῃ τῇ ΚΘ· λέγω ὅτι ἴσοι εἰσὶν οἱ κῶνοι. [Omitted graphic marker] Ἐπεὶ γὰρ ἴση ἐστὶν ἡ βάσις τοῦ ΑΒΓ τῇ ἐπιφανείᾳ τοῦ ΔΕΖ [τὰ δὲ ἴσα πρὸς τὸ αὐτὸ τὸν αὐτὸν ἔχει λόγον], ὡς ἄρα ἡ τοῦ ΒΑΓ βάσις πρὸς τὴν τοῦ ΔΕΖ βάσιν, οὕτως ἡ ἐπιφάνεια τοῦ ΔΕΖ πρὸς τὴν βάσιν τοῦ ΔΕΖ. Ἀλλ’ ὡς
15ἡ ἐπιφάνεια πρὸς τὴν ἰδίαν βάσιν, οὕτως ἡ ΔΘ πρὸς τὴν ΘΚ [ἐδείχθη γὰρ τοῦτο, ὅτι παντὸς κώνου ἰσοσκελοῦς ἡ
ἐπιφάνεια πρὸς τὴν βάσιν τὸν αὐτὸν λόγον ἔχει, ὃν49

1

.

50

ἡ πλευρὰ τοῦ κώνου πρὸς τὴν ἐκ τοῦ κέντρου τῆς βάσεως, ἡ ΔΕ τουτέστι πρὸς ΕΘ. Ὡς δὲ ἡ ΕΔ πρὸς ΘΔ, οὕτως ἡ ΕΘ πρὸς ΘΚ· ἰσογώνια γάρ ἐστι τὰ τρίγωνα]. Ἴση δέ ἐστιν ἡ ΘΚ τῇ ΑΗ· ὡς ἄρα ἡ βάσις τοῦ ΒΑΓ πρὸς τὴν
5βάσιν τοῦ ΔΕΖ, οὕτως τὸ ὕψος τοῦ ΔΕΖ πρὸς τὸ ὕψος τοῦ ΑΒΓ. Τῶν ΑΒΓ, ΔΕΖ ἄρα ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· ἴσος ἄρα ἐστὶν ὁ ΒΑΓ τῷ ΔΕΖ κώνῳ.
ιηʹ. Παντὶ ῥόμβῳ ἐξ ἰσοσκελῶν κώνων συγκειμένῳ ἴσος
10ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ ἑτέρου κώνου τῶν περιεχόντων τὸν ῥόμβον, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου καθέτῳ ἀγομένῃ ἐπὶ μίαν πλευρὰν τοῦ ἑτέρου κώνου. Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ
15ΑΒΓΔ, οὗ βάσις ὁ περὶ διάμετρον τὴν ΒΓ κύκλος, ὕψος δὲ τὸ ΑΔ, ἐκκείσθω δέ τις ἕτερος ὁ ΗΘΚ τὴν μὲν βάσιν ἔχων τῇ ἐπιφανείᾳ τοῦ ΑΒΓ κώνου ἴσην, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ Δ σημείου καθέτῳ ἐπὶ τὴν ΑΒ ἢ τὴν ἐπ’ εὐθείας αὐτῇ ἠγμένῃ, ἔστω δὲ ἡ ΔΖ, τὸ δὲ ὕψος
20τοῦ ΘΗΚ κώνου ἔστω τὸ ΘΛ· ἴσον δή ἐστιν τὸ ΘΛ τῇ
ΔΖ· λέγω ὅτι ἴσος ἐστὶν ὁ κῶνος τῷ ῥόμβῳ.50

1

.

51

[Omitted graphic marker] Ἐκκείσθω γὰρ ἕτερος κῶνος ὁ ΜΝΞ τὴν μὲν βάσιν ἔχων ἴσην τῇ βάσει τοῦ ΑΒΓ κώνου, τὸ δὲ ὕψος ἴσον τῇ ΑΔ, καὶ ἔστω τὸ ὕψος αὐτοῦ τὸ ΝΟ. Ἐπεὶ οὖν ἡ ΝΟ τῇ ΑΔ ἴση ἐστίν, ἔστιν ἄρα, ὡς ἡ ΝΟ πρὸς ΔΕ, οὕτως ἡ
5ΑΔ πρὸς ΔΕ. Ἀλλ’ ὡς μὲν ἡ ΑΔ πρὸς ΔΕ, οὕτως ὁ ΑΒΓΔ ῥόμβος πρὸς τὸν ΒΓΔ κῶνον, ὡς δὲ ἡ ΝΟ πρὸς τὴν ΔΕ, οὕτως ὁ ΜΝΞ κῶνος πρὸς τὸν ΒΓΔ κῶνον [διὰ τὸ τὰς βάσεις αὐτῶν εἶναι ἴσας]· ὡς ἄρα ὁ ΜΝΞ κῶνος πρὸς τὸν ΒΓΔ κῶνον, οὕτως ὁ ΑΒΓΔ ῥόμβος πρὸς τὸν ΒΓΔ κῶνον·
10ἴσος ἄρα ἐστὶν ὁ ΜΝΞ τῷ ΑΒΓΔ ῥόμβῳ. Καὶ ἐπεὶ ἡ ἐπιφάνεια τοῦ ΑΒΓ ἴση ἐστὶ τῇ βάσει τοῦ ΗΘΚ, ὡς ἄρα ἡ ἐπιφάνεια τοῦ ΑΒΓ πρὸς τὴν ἰδίαν βάσιν, οὕτως ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ [ἡ γὰρ βάσις τοῦ ΑΒΓ ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ]. Ὡς δὲ ἡ ἐπιφάνεια τοῦ ΑΒΓ πρὸς
15τὴν ἰδίαν βάσιν, οὕτως ἡ ΑΒ πρὸς τὴν ΒΕ, τουτέστιν ἡ ΑΔ πρὸς ΔΖ [ὅμοια γὰρ τὰ τρίγωνα]· ὡς ἄρα ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ, οὕτως ἡ ΑΔ πρὸς
ΔΖ. Ἴση δὲ ἡ μὲν ΑΔ τῇ ΝΟ [ὑπέκειτο γάρ], ἡ δὲ ΔΖ51

1

.

52

τῇ ΘΛ· ὡς ἄρα ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ, οὕτως τὸ ΝΟ ὕψος πρὸς τὸ ΘΛ. Τῶν ΗΘΚ, ΜΝΞ ἄρα κώνων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· ἴσοι ἄρα εἰσὶν οἱ κῶνοι. Ἐδείχθη δὲ ὁ ΜΝΞ ἴσος τῷ ΑΒΓΔ
5ῥόμβῳ· καὶ ὁ ΗΘΚ ἄρα κῶνος ἴσος ἐστὶ τῷ ΑΒΓΔ ῥόμβῳ.
ιθʹ. Ἐὰν κῶνος ἰσοσκελὴς ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὸ κέντρον τῆς βάσεως, ὁ δὲ γενόμενος
10ῥόμβος ἀφαιρεθῇ ἀπὸ τοῦ ὅλου κώνου, τῷ περιλείμματι ἴσος ἔσται κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ μίαν πλευρὰν
τοῦ κώνου καθέτῳ ἠγμένῃ. [Omitted graphic marker]52

1

.

53

Ἔστω κῶνος ἰσοσκελὴς ὁ ΑΒΓ καὶ τετμήσθω ἐπιπέδῳ παραλλήλῳ τῇ βάσει, καὶ ποιείτω τομὴν τὴν ΔΕ, κέντρον δὲ τῆς βάσεως ἔστω τὸ Ζ, καὶ ἀπὸ τοῦ περὶ διάμετρον τὴν ΔΕ κύκλου κῶνος ἀναγεγράφθω κορυφὴν ἔχων τὸ Ζ·
5ἔσται δὴ ῥόμβος ὁ ΒΔΖΕ ἐξ ἰσοσκελῶν κώνων συγκεί‐ μενος. Ἐκκείσθω δή τις κῶνος ὁ ΚΘΛ, οὗ ἡ μὲν βάσις ἔστω ἴση τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν ΔΕ, ΑΓ, τὸ δὲ ὕψος, ἀχθείσης ἀπὸ τοῦ Ζ σημείου καθέτου ἐπὶ τὴν ΑΒ τῆς ΖΗ, ἔστω ἴσον τῇ ΖΗ· λέγω ὅτι, ἐὰν ἀπὸ τοῦ ΑΒΓ
10κώνου νοηθῇ ἀφῃρημένος ὁ ΒΔΖΕ ῥόμβος, τῷ περιλείμ‐ ματι ἴσος ἔσται ὁ ΘΚΛ κῶνος. Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, ὥστε τὴν μὲν τοῦ ΜΝΞ βάσιν ἴσην εἶναι τοῦ ΑΒΓ κώνου τῇ ἐπιφανείᾳ, τὸ δὲ ὕψος ἴσον τῇ ΖΗ [διὰ δὴ τοῦτο ἴσος
15ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓ κώνῳ· ἐὰν γὰρ ὦσι δύο κῶνοι ἰσοσκελεῖς, ἡ δὲ τοῦ ἑτέρου κώνου ἐπιφάνεια ἴση ᾖ τῇ τοῦ ἑτέρου βάσει, ἔτι δὲ ἡ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ τὴν πλευρὰν τοῦ κώνου ἀγομένη κάθετος τῷ ὕψει ἴση, ἴσοι ἔσονται οἱ κῶνοι], τὴν δὲ τοῦ ΟΠΡ κώνου βάσιν
20ἴσην εἶναι τῇ ἐπιφανείᾳ τοῦ ΔΒΕ κώνου, ὕψος δὲ τῇ ΖΗ [διὰ δὴ τοῦτο καὶ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ ΒΔΖΕ ῥόμβῳ· τοῦτο γὰρ προαπεδείχθη]. Ἐπεὶ δὲ ἡ τοῦ ΑΒΓ κώνου ἐπιφάνεια σύγκειται ἔκ τε τῆς τοῦ ΔΒΕ ἐπιφανείας καὶ τῆς μεταξὺ τῶν ΔΕ, ΑΓ, ἀλλ’ ἡ μὲν τοῦ ΑΒΓ κώνου
25ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ κώνου, ἡ δὲ τοῦ ΔΒΕ ἐπιφάνεια ἴση ἐστὶν τῇ βάσει τοῦ ΟΠΡ, ἡ δὲ μεταξὺ τῶν ΔΕ, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα τοῦ ΜΝΞ βάσις ἴση ἐστὶ ταῖς βάσεσιν τῶν ΘΚΛ, ΟΠΡ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος· ἴσος ἄρα ἐστὶν καὶ ὁ ΜΝΞ κῶνος
30τοῖς ΘΚΛ, ΟΠΡ κώνοις. Ἀλλ’ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ53

1

.

54

τῷ ΑΒΓ κώνῳ, ὁ δὲ ΠΟΡ τῷ ΒΔΕΖ ῥόμβῳ· λοιπὸς ἄρα ὁ ΘΚΛ κῶνος τῷ περιλείμματι ἴσος ἐστίν.
κʹ. Ἐὰν ῥόμβου ἐξ ἰσοσκελῶν κώνων συγκειμένου ὁ ἕτερος
5κῶνος ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὴν αὐτὴν τῷ ἑτέρῳ κώνῳ, ἀπὸ δὲ τοῦ ὅλου ῥόμβου ὁ γενόμενος ῥόμβος ἀφαιρεθῇ, τῷ περιλείμματι ἴσος ἔσται ὁ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν
10παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου ἐπὶ τὴν πλευρὰν τοῦ ἑτέρου κώνου καθέτῳ ἠγμένῃ. Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ ΑΒΓΔ, καὶ τμηθήτω ὁ ἕτερος κῶνος ἐπιπέδῳ παραλλήλῳ τῇ
15βάσει, καὶ ποιείτω τομὴν τὴν ΕΖ, ἀπὸ δὲ τοῦ περὶ διά‐ μετρον τὴν ΕΖ κύκλου κῶνος ἀναγεγράφθω τὴν κορυφὴν ἔχων τὸ Δ σημεῖον· ἔσται δὴ γεγονὼς ῥόμβος ὁ ΕΒΔΖ. Καὶ νοείσθω ἀφῃρημένος ἀπὸ τοῦ ὅλου ῥόμβου, ἐκκείσθω δέ τις κῶνος ὁ ΘΚΛ τὴν μὲν βάσιν ἴσην ἔχων τῇ ἐπιφανείᾳ
20τῇ μεταξὺ τῶν ΑΓ, ΕΖ, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ Δ σημείου καθέτῳ ἀγομένῃ ἐπὶ τὴν ΒΑ ἢ τὴν ἐπ’ εὐθείας αὐτῇ· λέγω ὅτι ὁ ΘΚΛ κῶνος ἴσος ἐστὶ τῷ εἰρημένῳ περι‐
λείμματι.54

1

.

55

[Omitted graphic marker] Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, καὶ ἡ μὲν βάσις τοῦ ΜΝΞ κώνου ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΑΒΓ, τὸ δὲ ὕψος ἴσον τῇ ΔΗ [διὰ δὴ τὰ προδειχθέντα ἴσος ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓΔ ῥόμβῳ], τοῦ δὲ ΟΠΡ κώνου ἡ μὲν
5βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΕΒΖ κώνου, τὸ δὲ ὕψος ἴσον τῇ ΔΗ [ὁμοίως δὴ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ ΕΒΔΖ ῥόμβῳ]. Ἐπεὶ δὲ ὁμοίως ἡ ἐπιφάνεια τοῦ ΑΒΓ κώνου σύγκειται ἔκ τε τῆς τοῦ ΕΒΖ καὶ τῆς μεταξὺ τῶν ΕΖ, ΑΓ, ἀλλὰ ἡ μὲν τοῦ ΑΒΓ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει
10τοῦ ΜΝΞ, ἡ δὲ τοῦ ΕΒΖ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΟΡΠ κώνου, ἡ δὲ μεταξὺ τῶν ΕΖ, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα βάσις τοῦ ΜΝΞ ἴση ἐστὶ ταῖς βάσεσιν τῶν ΟΠΡ, ΘΚΛ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος· καὶ ὁ ΜΝΞ ἄρα κῶνος ἴσος ἐστὶ τοῖς ΘΚΛ,
15ΟΠΡ κώνοις. Ἀλλ’ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ τῷ ΑΒΓΔ ῥόμβῳ, ὁ δὲ ΟΠΡ κῶνος τῷ ΕΒΔΖ ῥόμβῳ· λοιπὸς
ἄρα ὁ κῶνος ὁ ΘΚΛ ἴσος ἐστὶ τῷ περιλείμματι τῷ λοιπῷ.55

1

.

56

καʹ. Ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ ἀρτιόπλευρόν τε καὶ ἰσόπλευρον, καὶ διαχθῶσιν εὐθεῖαι ἐπιζευγνύουσα τὰς πλευρὰς τοῦ πολυγώνου, ὥστε αὐτὰς παραλλήλους
5εἶναι μιᾷ ὁποιᾳοῦν τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν, αἱ ἐπιζευγνύουσαι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τοῦτον ἔχουσι τὸν λόγον, ὃν ἔχει ἡ ὑποτείνουσα τὰς μιᾷ ἐλάσσονας τῶν ἡμίσεων πρὸς τὴν πλευρὰν τοῦ πολυγώνου.
10 Ἔστω κύκλος ὁ ΑΒΓΔ, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγρά‐ φθω τὸ ΑΕΖΒΗΘΓΜΝΔΛΚ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ ΖΛ, ΒΔ, ΗΝ, ΘΜ· δῆλον δὴ ὅτι παράλληλοί εἰσιν τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ· λέγω οὖν ὅτι αἱ εἰρημέναι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον
15τὴν ΑΓ τὸν αὐτὸν λόγον ἔχουσι τῷ τῆς ΓΕ πρὸς ΕΑ. [Omitted graphic marker] Ἐπεζεύχθωσαν γὰρ αἱ ΖΚ, ΛΒ, ΗΔ, ΘΝ· παράλληλος ἄρα ἡ μὲν ΖΚ τῇ ΕΑ, ἡ δὲ ΒΛ τῇ ΖΚ, καὶ ἔτι ἡ μὲν ΔΗ τῇ ΒΛ, ἡ δὲ ΘΝ τῇ ΔΗ, καὶ ἡ ΓΜ τῇ ΘΝ [καὶ ἐπεὶ δύο παρ‐
άλληλοί εἰσιν αἱ ΕΑ, ΚΖ, καὶ δύο διηγμέναι εἰσὶν αἱ ΕΚ,56

1

.

57

ΑΟ], ἔστιν ἄρα, ὡς ἡ ΕΞ πρὸς ΞΑ, ἡ ΚΞ πρὸς ΞΟ. Ὡς δ’ ἡ ΚΞ πρὸς ΞΟ, ἡ ΖΠ πρὸς ΠΟ, ὡς δὲ ἡ ΖΠ πρὸς ΠΟ, ἡ ΛΠ πρὸς ΠΡ, ὡς δὲ ἡ ΛΠ πρὸς ΠΡ, οὕτως ἡ ΒΣ πρὸς ΣΡ, καὶ ἔτι ὡς ἡ μὲν ΒΣ πρὸς ΣΡ, ἡ ΔΣ πρὸς ΣΤ, ὡς δὲ ἡ ΔΣ
5πρὸς ΣΤ, ἡ ΗΥ πρὸς ΥΤ, καὶ ἔτι ὡς ἡ μὲν ΗΥ πρὸς ΥΤ, ἡ ΝΥ πρὸς ΥΦ, ὡς δὲ ἡ ΝΥ πρὸς ΥΦ, ἡ ΘΧ πρὸς ΧΦ, καὶ ἔτι ὡς μὲν ἡ ΘΧ πρὸς ΧΦ, ἡ ΜΧ πρὸς ΧΓ [καὶ πάντα ἄρα πρὸς πάντα ἐστὶν ὡς εἷς τῶν λόγων πρὸς ἕνα]· ὡς ἄρα ἡ ΕΞ πρὸς ΞΑ, οὕτως αἱ ΕΚ, ΖΛ, ΒΔ, ΗΝ, ΘΜ πρὸς τὴν
10ΑΓ διάμετρον. Ὡς δὲ ἡ ΕΞ πρὸς ΞΑ, οὕτως ἡ ΓΕ πρὸς ΕΑ· ἔσται ἄρα καὶ ὡς ἡ ΓΕ πρὸς ΕΑ, οὕτω πᾶσαι αἱ ΕΚ, ΖΛ, ΒΔ, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον.
κβʹ. Ἐὰν εἰς τμῆμα κύκλου πολύγωνον ἐγγραφῇ τὰς πλευρὰς
15ἔχον χωρὶς τῆς βάσεως ἴσας καὶ ἀρτίους, ἀχθῶσιν δὲ εὐθεῖαι παρὰ τὴν βάσιν τοῦ τμήματος αἱ τὰς πλευρὰς ἐπιζευγνύουσαι τοῦ πολυγώνου, αἱ ἀχθεῖσαι πᾶσαι καὶ ἡ ἡμίσεια τῆς βάσεως πρὸς τὸ ὕψος τοῦ τμήματος τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ἀπὸ τῆς διαμέτρου τοῦ κύκλου
20ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου ἐπιζευγνυμένη πρὸς τὴν τοῦ πολυγώνου πλευράν. Εἰς γὰρ κύκλον τὸν ΑΒΓΔ διήχθω τις εὐθεῖα ἡ ΑΓ, καὶ ἐπὶ τῆς ΑΓ πολύγωνον ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα ἀρτιόπλευρόν τε καὶ ἴσας ἔχον τὰς πλευρὰς χωρὶς τῆς
25βάσεως τῆς ΑΓ, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΕΘ, αἵ εἰσιν παράλληλοι τῇ βάσει τοῦ τμήματος· λέγω ὅτι ἐστὶν ὡς
αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ ΔΖ πρὸς ΖΒ.57

1

.

58

[Omitted graphic marker] Πάλιν γὰρ ὁμοίως ἐπεζεύχθωσαν αἱ ΗΕ, ΑΘ· παρ‐ άλληλοι ἄρα εἰσὶν τῇ ΒΖ· διὰ δὴ ταὐτά ἐστιν, ὡς ἡ ΚΖ πρὸς ΚΒ, ἥ τε ΗΚ πρὸς ΚΛ καὶ ἡ ΕΜ πρὸς ΜΛ καὶ ἡ ΜΘ πρὸς ΜΝ καὶ ἡ ΞΑ πρὸς ΞΝ [καὶ ὡς ἄρα πάντα πρὸς
5πάντα, εἷς τῶν λόγων πρὸς ἕνα]· ὡς ἄρα αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ ΖΚ πρὸς ΚΒ. Ὡς δὲ ἡ ΖΚ πρὸς ΚΒ, οὕτως ἡ ΔΖ πρὸς ΖΒ· ὡς ἄρα ἡ ΔΖ πρὸς ΖΒ, οὕτως αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΞΒ.
κγʹ.
10 Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓΔ, καὶ ἐγγεγρά‐ φθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, αἱ δὲ ΑΓ, ΔΒ διάμετροι ἔστωσαν. Ἐὰν δὴ μενούσης τῆς ΑΓ διαμέτρου περιενεχθῇ ὁ ΑΒΓΔ κύκλος ἔχων τὸ πολύγωνον, δῆλον ὅτι
15ἡ μὲν περιφέρεια αὐτοῦ κατὰ τῆς ἐπιφανείας τῆς σφαίρας ἐνεχθήσεται, αἱ δὲ τοῦ πολυγώνου γωνίαι χωρὶς τῶν πρὸς τοῖς Α, Γ σημείοις κατὰ κύκλων περιφερειῶν ἐνεχθή‐
σονται ἐν τῇ ἐπιφανείᾳ τῆς σφαίρας γεγραμμένων ὀρθῶν58

1

.

59

πρὸς τὸν ΑΒΓΔ κύκλον· διάμετροι δὲ αὐτῶν ἔσονται αἱ ἐπιζευγνύουσαι τὰς γωνίας τοῦ πολυγώνου παρὰ τὴν ΒΔ οὖσαι. Αἱ δὲ τοῦ πολυγώνου πλευραὶ κατά τινων κώνων ἐνεχθήσονται, αἱ μὲν ΑΖ, ΑΝ κατ’ ἐπιφανείας
5κώνου, οὗ βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, αἱ δὲ ΖΗ, ΜΝ κατά τινος κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΜΗ, κορυφὴ δὲ τὸ σημεῖον, καθ’ ὃ συμβάλ‐ λουσιν ἐκβαλλόμεναι αἱ ΖΗ, ΜΝ ἀλλήλαις τε καὶ τῇ ΑΓ,
10αἱ δὲ ΒΗ, ΜΔ πλευραὶ κατὰ κωνικῆς ἐπιφανείας οἰσθή‐ σονται, ἧς βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΒΔ ὀρθὸς πρὸς τὸν ΑΒΓΔ κύκλον, κορυφὴ δὲ τὸ σημεῖον, καθ’ ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΒΗ, ΔΜ ἀλλήλαις τε καὶ τῇ ΓΑ· ὁμοίως δὲ καὶ αἱ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ
15πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται πάλιν ὁμοίων ταύταις. Ἔσται δή τι σχῆμα ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον τῶν προειρημένων, οὗ ἡ ἐπιφάνεια ἐλάσ‐
20σων ἔσται τῆς ἐπι‐ φανείας τῆς σφαί‐
ρας. [Omitted graphic marker]59

1

.

60

Διαιρεθείσης γὰρ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν ΒΔ ὀρθοῦ πρὸς τὸν ΑΒΓΔ κύκλον ἡ ἐπιφάνεια τοῦ ἑτέρου ἡμισφαιρίου καὶ ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν αὐτῷ ἐγγεγραμμένου τὰ αὐτὰ πέρατα ἔχουσιν ἐν
5ἑνὶ ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιφανειῶν πέρας ἐστὶν τοῦ κύκλου ἡ ἐπιφάνεια τοῦ περὶ διάμετρον τὴν ΒΔ ὀρθοῦ πρὸς τὸν ΑΒΓΔ κύκλον· καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται αὐτῶν ἡ ἑτέρα ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ
10πέρατα ἐχούσης αὐτῇ. Ὁμοίως δὲ καὶ τοῦ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ σχήματος ἡ ἐπιφάνεια ἐλάσσων ἐστὶν τῆς τοῦ ἡμισφαιρίου ἐπιφανείας· καὶ ὅλη οὖν ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν τῇ σφαίρᾳ ἐλάσσων ἐστὶν τῆς ἐπιφα‐ νείας τῆς σφαίρας.
15
κδʹ. Ἡ τοῦ ἐγγραφομένου σχήματος εἰς τὴν σφαῖραν ἐπιφά‐ νεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς πλευρᾶς τοῦ σχήματος καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς πλευρὰς τοῦ
20πολυγώνου παραλλήλοις οὔσαις τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ εὐθείᾳ. Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓΔ, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω ἰσόπλευρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπὸ τοῦ πολυγώνου τοῦ
25ἐγγεγραμμένου νοείσθω τι εἰς τὴν σφαῖραν ἐγγραφὲν σχῆμα, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ παράλ‐ ληλοι οὖσαι τῇ ὑπὸ δύο πλευρὰς ὑποτεινούσῃ εὐθείᾳ,
κύκλος δέ τις ἐκκείσθω ὁ Ξ, οὗ ἡ ἐκ τοῦ κέντρου δυνάσθω60

1

.

61

τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἴσης ταῖς ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ· λέγω ὅτι ὁ κύκλος οὗτος ἴσος ἐστὶ τῇ ἐπι‐ φανείᾳ τοῦ εἰς τὴν σφαῖραν ἐγγραφομένου σχήματος. [Omitted graphic marker] Ἐκκείσθωσαν γὰρ κύκλοι οἱ Ο, Π, Ρ, Σ, Τ, Υ, καὶ τοῦ
5μὲν Ο ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῆς ΕΖ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Π δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμι‐ σείας τῶν ΕΖ, ΗΘ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ρ δυνάσθω τὸ περιεχόμενον ὑπὸ τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΗΘ,
10ΓΔ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Σ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΓΔ, ΚΛ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Τ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῶν ΚΛ, ΜΝ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Υ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας
15τῆς ΜΝ. Διὰ δὴ ταῦτα ὁ μὲν Ο κύκλος ἴσος ἐστὶ τῇ ἐπιφα‐ νείᾳ τοῦ ΑΕΖ κώνου, ὁ δὲ Π τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΕΖ, ΗΘ, ὁ δὲ Ρ τῇ μεταξὺ τῶν ΗΘ, ΓΔ, ὁ δὲ Σ τῇ μεταξὺ τῶν ΔΓ, ΚΛ, καὶ ἔτι ὁ μὲν Τ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΚΛ, ΜΝ, ὁ δὲ Υ τῇ τοῦ
20ΜΒΝ κώνου ἐπιφανείᾳ ἴσος ἐστίν· οἱ πάντες ἄρα κύκλοι ἴσοι εἰσὶν τῇ τοῦ ἐγγεγραμμένου σχήματος ἐπιφανείᾳ.
Καὶ φανερὸν ὅτι αἱ ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ61

1

.

62

κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ δὶς τῶν ἡμίσεων τῆς ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ, αἳ ὅλαι εἰσὶν αἱ ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ· αἱ ἄρα ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς
5ΑΕ καὶ πασῶν τῶν ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ. Ἀλλὰ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὸ ὑπὸ τῆς ΑΕ καὶ τῆς συγκειμένης ἐκ πασῶν τῶν ΕΖ, ΗΘ, ΓΔ, ΚΛ, ΜΝ· ἡ ἄρα ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων· καὶ ὁ κύκλος
10ἄρα ὁ Ξ ἴσος ἐστὶ τοῖς Ο, Π, Ρ, Σ, Τ, Υ κύκλοις. Οἱ δὲ Ο, Π, Ρ, Σ, Τ, Υ κύκλοι ἀπεδείχθησαν ἴσοι τῇ εἰρη‐ μένῃ τοῦ σχήματος ἐπιφανείᾳ· καὶ ὁ Ξ ἄρα κύκλος ἴσος ἔσται τῇ ἐπιφανείᾳ τοῦ σχήματος.
κεʹ.
15 Τοῦ ἐγγεγραμμένου σχήματος εἰς τὴν σφαῖραν ἡ ἐπιφάνεια ἡ περιεχομένη ὑπὸ τῶν κωνικῶν ἐπιφανειῶν ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ. Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓΔ, καὶ ἐν
20αὐτῷ ἐγγεγράφθω πολύγωνον [ἀρτιόγωνον] ἰσόπλευ‐ ρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπ’ αὐτοῦ νοείσθω ἐπιφάνεια ἡ ὑπὸ τῶν κωνικῶν ἐπιφανειῶν περιεχομένη· λέγω ὅτι ἡ ἐπιφάνεια τοῦ ἐγγραφέντος ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν
25ἐν τῇ σφαίρᾳ.62

1

.

63

Ἐπεζεύχθωσαν γὰρ αἱ ὑπὸ δύο πλευρὰς ὑποτεί‐ νουσαι τοῦ πολυγώνου αἱ ΕΙ, ΘΜ καὶ ταύταις παράλ‐
5ληλοι αἱ ΖΚ, ΔΒ, ΗΛ, ἐκκείσθω δέ τις κύκλος ὁ Ρ, οὗ ἡ ἐκ τοῦ κέντρου δύ‐ ναται τὸ ὑπὸ τῆς ΕΑ καὶ τῆς ἴσης πάσαις ταῖς ΕΙ,
10ΖΚ, ΒΔ, ΗΛ, ΘΜ· διὰ δὴ τὸ προδειχθὲν ἴσος ἐστὶν ὁ κύκλος τῇ τοῦ εἰρημένου σχήματος ἐπιφανείᾳ. Καὶ ἐπεὶ ἐδείχθη ὅτι ἐστίν, ὡς ἡ
15ἴση πάσαις ταῖς ΕΙ, ΖΚ, ΒΔ, ΗΛ, ΘΜ πρὸς τὴν διάμετρον τοῦ κύκλου τὴν ΑΓ, οὕτως ἡ ΓΕ πρὸς ΕΑ, τὸ ἄρα ὑπὸ τῆς ἴσης πάσαις ταῖς εἰρημέναις καὶ τῆς ΕΑ, τουτέστιν τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ρ κύκλου, ἴσον ἐστὶν τῷ ὑπὸ τῶν ΑΓ, ΓΕ.
20Ἀλλὰ καὶ τὸ ὑπὸ ΑΓ, ΓΕ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΑΓ· ἔλασσον ἄρα ἐστὶν τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ρ τοῦ ἀπὸ τῆς ΑΓ [ἐλάσσων ἄρα ἐστὶν ἡ ἐκ τοῦ κέντρου τοῦ Ρ τῆς ΑΓ· ὥστε ἡ διάμετρος τοῦ Ρ κύκλου ἐλάσσων ἐστὶν ἢ διπλασία τῆς διαμέτρου τοῦ ΑΒΓΔ κύκλου,
25καὶ δύο ἄρα τοῦ ΑΒΓΔ κύκλου διάμετροι μείζους εἰσὶ τῆς διαμέτρου τοῦ Ρ κύκλου, καὶ τὸ τετράκις ἀπὸ τῆς διαμέτρου τοῦ ΑΒΓΔ κύκλου, τουτέστι τῆς ΑΓ, μεῖζόν ἐστι τοῦ ἀπὸ τῆς τοῦ Ρ κύκλου διαμέτρου. Ὡς δὲ τὸ τετράκις ἀπὸ τῆς
ΑΓ πρὸς τὸ ἀπὸ τῆς τοῦ Ρ κύκλου διαμέτρου, οὕτως63

1

.

64

τέσσαρες κύκλοι οἱ ΑΒΓΔ πρὸς τὸν Ρ κύκλον· τέσσαρες ἄρα κύκλοι οἱ ΑΒΓΔ μείζους εἰσὶν τοῦ Ρ κύκλου]· ὁ ἄρα κύκλος ὁ Ρ ἐλάσσων ἐστὶν ἢ τετραπλάσιος τοῦ μεγίστου κύκλου. Ὁ δὲ Ρ κύκλος ἴσος ἐδείχθη τῇ εἰρημένῃ ἐπιφανείᾳ
5τοῦ σχήματος· ἡ ἄρα ἐπιφάνεια τοῦ σχήματος ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.
κϛʹ. Τῷ ἐγγραφομένῳ ἐν τῇ σφαίρᾳ σχήματι τῷ περιεχομένῳ
10ὑπὸ τῶν ἐπιφανειῶν τῶν κωνικῶν ἴσος ἐστὶν κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος τοῦ ἐγγραφέντος ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου
καθέτῳ ἠγμένῃ. [Omitted graphic marker]64

1

.

65

Ἔστω ἡ σφαῖρα καὶ ὁ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓΔ καὶ τὰ ἄλλα τὰ αὐτὰ τῷ πρότερον, ἔστω δὲ κῶνος ὀρθὸς ὁ Ρ βάσιν μὲν ἔχων τὴν ἐπιφάνειαν τοῦ σχήματος τοῦ ἐγγεγραμμένου ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ
5τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυ‐ γώνου καθέτῳ ἠγμένῃ· δεικτέον ὅτι ὁ κῶνος ὁ Ρ ἴσος ἐστὶν τῷ ἐγγεγραμμένῳ ἐν τῇ σφαίρᾳ σχήματι. Ἀπὸ γὰρ τῶν κύκλων, ὧν εἰσι διάμετροι αἱ ΖΝ, ΗΜ, ΘΛ, ΙΚ, κῶνοι ἀναγεγράφθωσαν κορυφὴν ἔχοντες τὸ τῆς
10σφαίρας κέντρον· ἔσται δὴ ῥόμβος στερεὸς ἔκ τε τοῦ κώνου, οὗ βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, καὶ τοῦ κώνου, οὗ βάσις ὁ αὐτὸς κύκλος, κορυφὴ δὲ τὸ Χ σημεῖον· ἴσος ἐστὶ τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν ἐπιφάνειαν τοῦ ΝΑΖ, ὕψος δὲ ἴσον τῇ ἀπὸ
15τοῦ Χ καθέτῳ ἠγμένῃ. Πάλιν δὲ καὶ τὸ περιλελειμμένον τοῦ ῥόμβου τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΖΝ, ΗΜ καὶ τῶν ἐπιφανειῶν τῶν κώνων τοῦ τε ΖΝΧ καὶ τοῦ ΗΜΧ ἴσον ἐστὶ τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι ἴσην
20τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΜΗ, ΖΝ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ ἐπὶ τὴν ΖΗ καθέτῳ ἠγμένῃ· δέδεικται γὰρ ταῦτα. Ἔτι δὲ καὶ τὸ περιλειπόμενον τοῦ κώνου τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων
25ἐπιπέδων τῶν κατὰ τὰς ΗΜ, ΒΔ καὶ τῆς ἐπιφανείας τοῦ ΜΗΧ κώνου καὶ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν ΒΔ ἴσον τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν ἴσην τῇ ἐπιφανείᾳ
τοῦ κώνου τῇ μεταξὺ τῶν ἐπιπέδων τῶν κατὰ τὰς ΗΜ,65

1

.

66

ΒΔ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ ἐπὶ τὴν ΒΗ καθέτῳ ἠγμένῃ. Ὁμοίως δὲ καὶ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ ὅ τε ῥόμβος ὁ ΧΚΓΙ καὶ τὰ περιλείμματα τῶν κώνων ἴσα ἔσται τοσούτοις καὶ τηλικούτοις κώνοις, ὅσοι καὶ πρότερον ἐρρήθησαν·
5δῆλον οὖν ὅτι καὶ ὅλον τὸ σχῆμα τὸ ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ἴσον ἐστὶν πᾶσιν τοῖς εἰρημένοις κώνοις. Οἱ δὲ κῶνοι ἴσοι εἰσὶν τῷ Ρ κώνῳ, ἐπειδὴ ὁ Ρ κῶνος ὕψος μὲν ἔχει ἑκάστῳ ἴσον τῶν εἰρημένων κώνων, βάσιν δὲ ἴσην πάσαις ταῖς βάσεσιν αὐτῶν· δῆλον οὖν ὅτι τὸ ἐν τῇ
10σφαίρᾳ ἐγγεγραμμένον ἴσον ἐστὶν τῷ ἐκκειμένῳ κώνῳ.
κζʹ. Τὸ ἐγγεγραμμένον σχῆμα ἐν τῇ σφαίρᾳ τὸ περιεχόμενον ὑπὸ τῶν ἐπιφανειῶν τῶν κωνικῶν ἔλασσόν ἐστιν ἢ τετρα‐ πλάσιον τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστῳ
15κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας. Ἔστω γὰρ γινόμενος κῶνος ἴσος τῷ σχήματι τῷ ἐγγε‐ γραμμένῳ ἐν τῷ σφαίρᾳ τὴν βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμένου σχήματος, τὸ δὲ ὕψος
20ἴσον τῇ ἀπὸ τοῦ κέντρου τοῦ κύκλου καθέτῳ ἀγομένῃ ἐπὶ μίαν πλευρὰν τοῦ ἐγγραφέντος πολυγώνου ὁ Ρ, ὁ δὲ κῶνος ὁ Ξ ἔστω βάσιν ἔχων ἴσην τῷ ΑΒΓΔ κύκλῳ, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τοῦ ΑΒΓΔ κύκλου. Ἐπεὶ οὖν ὁ Ρ κῶνος βάσιν ἔχει ἴσην τῇ ἐπιφανείᾳ τοῦ
25ἐγγεγραμμένου σχήματος ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὴν ΑΖ, ἐδείχθη δὲ ἡ
ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος ἐλάσσων ἢ66

1

.

67

[Omitted graphic marker] τετραπλασία τοῦ ἐν τῇ σφαίρᾳ μεγίστου κύκλου, ἔσται ἄρα ἡ τοῦ Ρ κώνου βάσις ἐλάσσων ἢ τετραπλασία τῆς βάσεως τοῦ Ξ κώνου. Ἔστιν δὲ καὶ τὸ ὕψος τοῦ Ρ ἔλασσον τοῦ ὕψους τοῦ Ξ κώνου· ἐπεὶ οὖν ὁ Ρ κῶνος τὴν μὲν
5βάσιν ἔχει ἐλάσσονα ἢ τετραπλασίαν τῆς τοῦ Ξ βάσεως, τὸ δὲ ὕψος ἔλασσον τοῦ ὕψους, δῆλον ὡς καὶ αὐτὸς ὁ Ρ κῶνος ἐλάσσων ἐστὶν ἢ τετραπλάσιος τοῦ Ξ κώνου. Ἀλλὰ καὶ ὁ Ρ κῶνος ἴσος ἐστὶ τῷ ἐγγεγραμμένῳ σχήματι· τὸ ἄρα ἐγγεγραμμένον σχῆμα ἔλασσόν ἐστιν ἢ τετραπλάσιον
10τοῦ Ξ κώνου.
κηʹ. Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓΔ, περὶ δὲ τὸν ΑΒΓΔ κύκλον περιγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω
15ὑπὸ τετράδος, τὸ δὲ περὶ τὸν κύκλον περιγεγραμμένον
πολύγωνον κύκλος περιγεγραμμένος περιλαμβανέτω περὶ67

1

.

68

τὸ αὐτὸ κέντρον γενόμενος τῷ ΑΒΓΔ. Μενούσης δὴ τῆς ΕΗ περιενεχθήτω τὸ ΕΖΗΘ ἐπίπεδον, ἐν ᾧ τό τε πολύγωνον καὶ ὁ κύκλος· δῆλον οὖν ὅτι ἡ μὲν περιφέρεια τοῦ ΑΒΓΔ κύκλου κατὰ τῆς ἐπιφανείας τῆς σφαίρας οἰσθήσεται, ἡ
5δὲ περιφέρεια τοῦ ΕΖΗΘ κατ’ ἄλλης ἐπιφανείας σφαίρας τὸ αὐτὸ κέντρον ἐχούσης τῇ ἐλάσσονι οἰσθήσεται, αἱ δὲ ἁφαί, καθ’ ἃς ἐπιψαύουσιν αἱ πλευραί, γράφουσιν κύκλους ὀρθοὺς πρὸς τὸν ΑΒΓΔ κύκλον ἐν τῇ ἐλάσσονι σφαίρᾳ, αἱ δὲ γωνίαι τοῦ πολυγώνου χωρὶς τῶν πρὸς τοῖς Ε, Η
10σημείοις κατὰ κύκλων περιφερειῶν οἰσθήσονται ἐν τῇ ἐπιφανείᾳ τῆς μείζονος σφαίρας γεγραμμένων ὀρθῶν πρὸς τὸν ΕΖΗΘ κύκλον, αἱ δὲ πλευραὶ τοῦ πολυγώνου κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται, καθάπερ ἐπὶ τῶν πρὸ τούτου· ἔσται οὖν τὸ σχῆμα τὸ περιεχόμενον ὑπὸ τῶν
15ἐπιφανειῶν τῶν κωνικῶν περὶ μὲν τὴν ἐλάσσονα σφαῖραν περιγεγραμμένον, ἐν δὲ τῇ μείζονι ἐγγεγραμμένον. Ὅτι δὲ ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος μείζων ἐστὶ τῆς ἐπιφανείας τῆς σφαίρας οὕτως δειχθήσεται·
ἔστω γὰρ ἡ ΚΔ διάμετρος κύκλου τινὸς τῶν ἐν τῇ ἐλάσσονι [Omitted graphic marker]68

1

.

69

σφαίρᾳ τῶν Κ, Δ σημείων ὄντων, καθ’ ἃ ἅπτονται τοῦ ΑΒΓΔ κύκλου αἱ πλευραὶ τοῦ περιγεγραμμένου πολυγώ‐ νου. Διῃρημένης δὴ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν ΚΔ ὀρθοῦ πρὸς τὸν ΑΒΓΔ κύκλον καὶ ἡ ἐπιφάνεια
5τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν διαι‐ ρεθήσεται ὑπὸ τοῦ ἐπιπέδου. Καὶ φανερὸν ὅτι τὰ αὐτὰ πέρατα ἔχουσιν ἐν ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιπέδων πέρας ἐστὶν ἡ τοῦ κύκλου περιφέρεια τοῦ περὶ διάμετρον τὴν ΚΔ ὀρθοῦ πρὸς τὸν ΑΒΓΔ κύκλον· καί εἰσιν ἀμφότεραι
10ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται ἡ ἑτέρα αὐτῶν ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης· ἐλάσσων οὖν ἐστιν ἡ περιλαμβανομένη τοῦ τμήματος τῆς σφαίρας ἐπιφάνεια τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγραμμένου περὶ αὐτήν. Ὁμοίως δὲ
15καὶ ἡ τοῦ λοιποῦ τμήματος τῆς σφαίρας ἐπιφάνεια ἐλάσσων ἐστὶν τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγραμμένου περὶ αὐτήν· δῆλον οὖν ὅτι καὶ ὅλη ἡ ἐπιφάνεια τῆς σφαίρας ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγραμμένου περὶ αὐτήν.
20
κθʹ. Τῇ ἐπιφανείᾳ τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ πολυ‐ γώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς
25γωνίας τοῦ πολυγώνου οὔσαις παρά τινα τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν. Τὸ γὰρ περιγεγραμμένον περὶ τὴν ἐλάσσονα σφαῖραν ἐγγέγραπται εἰς τὴν μείζονα σφαῖραν· τοῦ δὲ ἐγγεγραμ‐
μένου ἐν τῇ σφαίρᾳ περιεχομένου ὑπὸ τῶν ἐπιφανειῶν69

1

.

70

τῶν κωνικῶν δέδεικται ὅτι τῇ ἐπιφανείᾳ ἴσος ἐστὶν ὁ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου δύνα‐
5ται τὸ περιεχόμενον ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς
10γωνίας τοῦ πολυγώ‐ νου οὔσαις παρά τινα τῶν ὑπὸ δύο πλευρὰς ὑποτεινουσῶν· δῆλον οὖν ἐστι τὸ προειρη‐
15μένον.
λʹ. Τοῦ σχήματος τοῦ περιγεγραμμένου περὶ τὴν σφαῖραν ἡ ἐπιφά‐
20νεια μείζων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ. Ἔστω γὰρ ἥ τε
25σφαῖρα καὶ ὁ κύκλος καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς πρότερον προκει‐ μένοις, καὶ ὁ Λ κύκλος ἴσος τῇ ἐπιφανείᾳ ἔστω τοῦ προ‐ κειμένου περιγεγραμμένου περὶ τὴν ἐλάσσονα σφαῖραν.
30Ἐπεὶ οὖν ἐν τῷ ΕΖΗΘ κύκλῳ πολύγωνον ἰσόπλευρον70

1

.

71

ἐγγέγραπται καὶ ἀρτιογώνιον, αἱ ἐπιζευγνύουσαι τὰς τοῦ πολυγώνου πλευρὰς παράλληλοι οὖσαι τῇ ΖΘ πρὸς τὴν ΖΘ τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ΘΚ πρὸς ΚΖ· ἴσον ἄρα ἐστὶν τὸ περιεχόμενον σχῆμα ὑπό τε μιᾶς πλευρᾶς τοῦ
5πολυγώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου τῷ περιεχομένῳ ὑπὸ τῶν ΖΘΚ· ὥστε ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον δύναται τῷ ὑπὸ ΖΘΚ· μείζων ἄρα ἐστὶν ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου τῆς ΘΚ. Ἡ δὲ ΘΚ ἴση ἐστὶ τῇ διαμέτρῳ τοῦ ΑΒΓΔ κύκλου
10[διπλασία γάρ ἐστιν τῆς ΧΣ οὔσης ἐκ τοῦ κέντρου τοῦ ΑΒΓΔ κύκλου]· δῆλον οὖν ὅτι μείζων ἐστὶν ἢ τετραπλάσιος ὁ Λ κύκλος, τουτέστιν ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν ἐλάσσονα σφαῖραν, τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.
15
λαʹ. Τῷ περιγεγραμμένῳ σχήματι περὶ τὴν ἐλάσσονα σφαῖραν ἴσος ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας.
20 Τὸ γὰρ περιγεγραμμένον σχῆμα περὶ τὴν ἐλάσσονα σφαῖραν ἐγγέγραπται ἐν τῇ μείζονι σφαίρᾳ· τῷ δὲ ἐγγε‐ γραμμένῳ σχήματι περιεχομένῳ ὑπὸ τῶν κωνικῶν ἐπιφα‐ νειῶν δέδεικται ἴσος κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ ἴσον τῇ
25ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· αὕτη δέ ἐστιν ἴση τῇ ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας· δῆλον οὖν ἐστι τὸ
προτεθέν.71

1

.

72

(1t)

ΠΟΡΙΣΜΑ.
2 Ἐκ τούτου δὲ φανερὸν ὅτι τὸ σχῆμα τὸ περιγραφόμενον περὶ τὴν ἐλάσσονα σφαῖραν μεῖζόν ἐστιν ἢ τετραπλάσιον κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον κύκλον τῶν
5ἐν τῇ σφαίρᾳ, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας. Ἐπειδὴ γὰρ ἴσος ἐστὶ τῷ σχήματι κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ αὐτοῦ, ὕψος δὲ ἴσον [τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ, τουτέστιν] τῇ ἐκ τοῦ κέντρου τῆς ἐλάσσο‐
10νος σφαίρας, ἔστι δὲ ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν μείζων ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ, μεῖζον ἄρα ἢ τετρα‐ πλάσιον ἔσται τὸ σχῆμα τὸ περιγεγραμμένον περὶ τὴν σφαῖραν τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον
15κύκλον, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας, ἐπειδὴ καὶ ὁ κῶνος ὁ ἴσος αὐτῷ μείζων ἢ τετραπλάσιος γίνεται τοῦ εἰρημένου κώνου [βάσιν τε γὰρ μείζονα ἢ τετραπλασίαν ἔχει καὶ ὕψος ἴσον].
λβʹ.
20 Ἐὰν ᾖ ἐν σφαίρᾳ σχῆμα ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον ὑπὸ ὁμοίων πολυγώνων τὸν αὐτὸν τρόπον τοῖς πρότερον κατεσκευασμένα, ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος πρὸς τὴν τοῦ ἐγγεγραμμένου ἐπιφάνειαν διπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ τοῦ
25περιγεγραμμένου πολυγώνου περὶ τὸν μέγιστον κύκλον πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου πολυγώνου ἐν τῷ
αὐτῷ κύκλῳ, αὐτὸ δὲ τὸ σχῆμα [τὸ περιγεγραμμένον]72

1

.

73

πρὸς τὸ σχῆμα τριπλασίονα λόγον ἔχει τοῦ αὐτοῦ λόγου. Ἔστω ἐν σφαίρᾳ κύκλος ὁ ΑΒΓΔ, καὶ ἐγγεγράφθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, καὶ ἄλλο περιγεγράφθω
5περὶ τὸν κύκλον ὅμοιον τῷ ἐγγεγραμμένῳ, ἔτι δὲ αἱ τοῦ περιγεγραμμένου πολυγώνου πλευραὶ ἐπιψαυέτωσαν τοῦ κύκλου κατὰ μέσα τῶν περιφερειῶν τῶν ἀποτεμνομένων ὑπὸ τῶν τοῦ ἐγγεγραμμένου πολυγώνου πλευρῶν, αἱ δὲ ΕΗ, ΖΘ διάμετροι πρὸς ὀρθὰς ἔστωσαν ἀλλήλαις τοῦ
10κύκλου τοῦ περιλαμβάνοντος τὸ περιγεγραμμένον πολύ‐ γωνον καὶ ὁμοίως κείμεναι ταῖς ΑΓ, ΒΔ διαμέτροις, καὶ νοείσθωσαν ἐπιζευγνύμεναι ἐπὶ τὰς ἀπεναντίον γωνίας τοῦ πολυγώνου, αἳ γίγνονται ἀλλήλαις τε καὶ τῇ ΖΒΔΘ παράλληλοι. Μενούσης δὴ τῆς ΕΗ διαμέτρου καὶ περι‐
15ενεχθεισῶν τῶν περιμέτρων τῶν πολυγώνων περὶ τὴν τοῦ κύκλου περιφέρειαν τὸ μὲν ἐγγεγραμμένον σχῆμα ἔσται ἐν τῇ σφαίρᾳ, τὸ δὲ περιγεγραμμένον· δεικτέον οὖν ὅτι ἡ μὲν ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου διπλασίονα λόγον ἔχει
20ἤπερ ἡ ΕΛ πρὸς ΑΚ, τὸ δὲ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἔχει τοῦ αὐτοῦ λόγου. Ἔστω γὰρ ὁ μὲν Μ κύκλος ἴσος τῇ ἐπιφανείᾳ τοῦ περιγεγραμμένου περὶ τὴν σφαῖραν, ὁ δὲ Ν ἴσος τῇ
25ἐπιφανείᾳ τοῦ ἐγγεγραμμένου· δύναται ἄρα τοῦ μὲν Μ ἡ ἐκ τοῦ κέντρου τὸ περιεχόμενον ὑπὸ τῆς ΕΛ καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου
τοῦ περιγεγραμμένου, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ν τὸ ὑπὸ73

1

.

74

τῆς ΑΚ καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας. Καὶ ἐπεὶ ὅμοιά ἐστιν τὰ πολύγωνα, ὅμοια ἂν εἴη καὶ τὰ περιεχόμενα χωρία ὑπὸ τῶν εἰρημένων γραμμῶν [τουτέστι τῶν ἐπὶ τὰς γωνίας καὶ τῶν πλευρῶν τῶν πολυ‐
5γώνων, ὥστε τὸν αὐτὸν λόγον ἔχειν πρὸς ἄλληλα, ὃν ἔχουσιν αἱ τῶν πολυγώνων πλευραὶ δυνάμει. Ἀλλὰ καὶ ὃν ἔχει λόγον τὰ περιεχόμενα ὑπὸ τῶν εἰρημένων γραμμῶν, τοῦτον ἔχουσιν αἱ ἐκ τῶν κέντρων τῶν Μ, Ν κύκλων πρὸς
ἀλλήλας δυνάμει· ὥστε καὶ αἱ τῶν Μ, Ν διάμετροι τὸν [Omitted graphic marker]74

1

.

75

αὐτὸν ἔχουσι λόγον ταῖς τῶν πολυγώνων πλευραῖς. Οἱ δὲ κύκλοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχουσιν τῶν διαμέτρων, οἵτινες ἴσοι εἰσὶν ταῖς ἐπιφανείαις τοῦ περι‐ γεγραμμένου καὶ τοῦ ἐγγεγραμμένου]· δῆλον οὖν ὅτι ἡ
5ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου σχήματος εἰς τὴν σφαῖραν διπλασίονα λόγον ἔχει ἤπερ ἡ ΕΛ πρὸς ΑΚ. Εἰλήφθωσαν δὴ δύο κῶνοι οἱ Ο, Ξ, καὶ ἔστω ὁ μὲν Ξ
10κῶνος βάσιν ἔχων τὸν Ξ κύκλον ἴσον τῷ Μ, ὁ δὲ Ο βάσιν ἔχων τὸν Ο κύκλον ἴσον τῷ Ν, ὕψος δὲ ὁ μὲν Ξ κῶνος τὴν ἐκ τοῦ κέντρου τῆς σφαίρας, ὁ δὲ Ο τὴν ἀπὸ τοῦ κέντρου ἐπὶ τὴν ΑΚ κάθετον ἠγμένην· ἴσος ἄρα ὁ μὲν Ξ κῶνος τῷ σχήματι τῷ περιγεγραμμένῳ περὶ τὴν σφαῖραν, ὁ δὲ Ο τῷ
15ἐγγεγραμμένῳ [δέδεικται οὖν ταῦτα]. Καὶ ἐπεὶ ὅμοιά ἐστι τὰ πολύγωνα, τὸν αὐτὸν ἔχει λόγον ἡ ΕΛ πρὸς τὴν ΑΚ, ὃν ἡ ἐκ τοῦ κέντρου τῆς σφαίρας πρὸς τὴν ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὴν ΑΚ κάθετον ἀγομένην· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ ὕψος τοῦ Ξ κώνου πρὸς τὸ ὕψος
20τοῦ Ο κώνου, ὃν ἡ ΕΛ πρὸς ΑΚ. Ἔχει δὲ καὶ ἡ διάμετρος τοῦ Μ κύκλου πρὸς τὴν διάμετρον τοῦ Ν κύκλου λόγον, ὃν ἔχει ἡ ΕΛ πρὸς ΑΚ· τῶν ἄρα Ξ, Ο κώνων αἱ διάμετροι τῶν βάσεων τοῖς ὕψεσι τὸν αὐτὸν ἔχουσι λόγον [ὅμοιοι ἄρα εἰσίν], καὶ διὰ τοῦτο τριπλασίονα λόγον ἕξει ὁ Ξ
25κῶνος πρὸς τὸν Ο κῶνον ἤπερ ἡ διάμετρος τοῦ Μ κύκλου πρὸς τὴν διάμετρον τοῦ Ν κύκλου. Δῆλον οὖν ὅτι καὶ τὸ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον
τριπλασίονα λόγον ἕξει ἤπερ ἡ ΕΛ πρὸς ΑΚ.75

1

.

76

λγʹ. Πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν αὐτῇ. Ἔστω γὰρ σφαῖρά τις καὶ ἔστω τετραπλάσιος τοῦ
5μεγίστου κύκλου ὁ Α· λέγω ὅτι ὁ Α ἴσος ἐστὶ τῇ ἐπιφανεία τῆς σφαίρας. Εἰ γὰρ μή, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω πρότερον μείζων ἡ ἐπιφάνεια τῆς σφαίρας τοῦ κύκλου. Ἔστι δὴ δύο μεγέθη ἄνισα ἥ τε ἐπιφάνεια τῆς σφαίρας καὶ ὁ Α
10κύκλος· δυνατὸν ἄρα ἐστὶ λαβεῖν δύο εὐθείας ἀνίσους, ὥστε τὴν μείζονα πρὸς τὴν ἐλάσσονα λόγον ἔχειν ἐλάσσονα τοῦ ὃν ἔχει ἡ ἐπιφάνεια τῆς σφαίρας πρὸς τὸν κύκλον. Εἰλήφθωσαν αἱ Β, Γ, καὶ τῶν Β, Γ μέση ἀνάλογον ἔστω ἡ Δ, νοείσθω δὲ καὶ ἡ σφαῖρα ἐπιπέδῳ τετμημένη διὰ τοῦ
15κέντρου κατὰ τὸν ΕΖΗΘ κύκλον, νοείσθω δὲ καὶ εἰς τὸν κύκλον ἐγγεγραμμένον καὶ περιγεγραμμένον πολύγωνον, ὥστε ὅμοιον εἶναι τὸ περιγεγραμμένον τῷ ἐγγεγραμμένῳ πολυγώνῳ καὶ τὴν τοῦ περιγεγραμμένου πλευρὰν ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ Β πρὸς Δ [καὶ ὁ διπλάσιος ἄρα
20λόγος τοῦ διπλασίου λόγου ἐστὶν ἐλάσσων. Καὶ τοῦ μὲν τῆς Β πρὸς Δ διπλάσιός ἐστιν ὁ τῆς Β πρὸς τὴν Γ, τῆς δὲ πλευρᾶς τοῦ περιγεγραμμένου πολυγώνου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου διπλάσιος ὁ τῆς ἐπιφανείας τοῦ περιγεγραμμένου στερεοῦ πρὸς τὴν ἐπιφάνειαν τοῦ
25ἐγγεγραμμένου]· ἡ ἐπιφάνεια ἄρα τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου σχήματος ἐλάσσονα λόγον ἔχει ἤπερ ἡ ἐπι‐ φάνεια τῆς σφαίρας πρὸς τὸν Α κύκλον· ὅπερ ἄτοπον· ἡ
μὲν γὰρ ἐπιφάνεια τοῦ περιγεγραμμένου τῆς ἐπιφανείας τῆς76

1

.

77

σφαίρας μείζων ἐστίν, ἡ δὲ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος τοῦ Α κύκλου ἐλάσσων ἐστί [δέδεικται γὰρ ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου ἐλάσσων τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ ἢ τετραπλασία, τοῦ δὲ μεγίστου
5κύκλου τετραπλάσιός ἐστιν ὁ Α κύκλος]. Οὐκ ἄρα ἡ ἐπιφάνεια τῆς σφαίρας μείζων ἐστὶ τοῦ Α κύκλου. [Omitted graphic marker] Λέγω δὴ ὅτι οὐδὲ ἐλάσσων. Εἰ γὰρ δυνατόν, ἔστω· καὶ ὁμοίως εὑρήσθωσαν αἱ Β, Γ εὐθεῖαι ὥστε τὴν Β πρὸς Γ ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ὁ Α κύκλος πρὸς
10τὴν ἐπιφάνειαν τῆς σφαίρας, καὶ τῶν Β, Γ μέση ἀνάλογον ἡ Δ, καὶ ἐγγεγράφθω καὶ περιγεγράφθω πάλιν, ὥστε τὴν τοῦ περιγεγραμμένου ἐλάσσονα λόγον ἔχειν τοῦ τῆς Β πρὸς Δ [καὶ τὰ διπλάσια ἄρα]· ἡ ἐπιφάνεια ἄρα τοῦ περιγεγραμμένου πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου
15ἐλάσσονα λόγον ἔχει ἤπερ [ἡ Β πρὸς Γ. Ἡ δὲ Β πρὸς Γ ἐλάσσονα λόγον ἔχει ἤπερ] ὁ Α κύκλος πρὸς τὴν ἐπιφά‐
νειαν τῆς σφαίρας· ὅπερ ἄτοπον· ἡ μὲν γὰρ τοῦ περι‐77

1

.

78

γεγραμμένου ἐπιφάνεια μείζων ἐστὶ τοῦ Α κύκλου, ἡ δὲ τοῦ ἐγγεγραμμένου ἐλάσσων τῆς ἐπιφανείας τῆς σφαίρας. Οὐκ ἄρα οὐδὲ ἐλάσσων ἡ ἐπιφάνεια τῆς σφαίρας τοῦ Α κύκλου. Ἐδείχθη δὲ ὅτι οὐδὲ μείζων· ἡ ἄρα ἐπιφάνεια
5τῆς σφαίρας ἴση ἐστὶ τῷ Α κύκλῳ, τουτέστι τῷ τετραπλα‐ σίῳ τοῦ μεγίστου κύκλου.
λδʹ. Πᾶσα σφαῖρα τετραπλασία ἐστὶ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστω κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος
10δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας. Ἔστω γὰρ σφαῖρά τις καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓΔ. Εἰ οὖν μή ἐστιν ἡ σφαῖρα τετραπλασία τοῦ εἰρη‐ μένου κώνου, ἔστω, εἰ δυνατόν, μείζων ἢ τετραπλασία· ἔστω δὲ ὁ Ξ κῶνος βάσιν μὲν ἔχων τετραπλασίαν τοῦ
15ΑΒΓΔ κύκλου, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας· μείζων οὖν ἐστιν ἡ σφαῖρα τοῦ Ξ κώνου. Ἔσται δὴ δύο μεγέθη ἄνισα ἥ τε σφαῖρα καὶ ὁ κῶνος· δυνατὸν οὖν δύο εὐθείας λαβεῖν ἀνίσους, ὥστε ἔχειν τὴν μείζονα πρὸς τὴν ἐλάσσονα ἐλάσσονα λόγον τοῦ ὃν ἔχει ἡ σφαῖρα
20πρὸς τὸν Ξ κῶνον. Ἔστωσαν οὖν αἱ Κ, Η, αἱ δὲ Ι, Θ εἰλημμέναι, ὥστε τῷ ἴσῳ ἀλλήλων ὑπερέχειν τὴν Κ τῆς Ι καὶ τὴν Ι τῆς Θ καὶ τὴν Θ τῆς Η, νοείσθω δὲ καὶ εἰς τὸν ΑΒΓΔ κύκλον ἐγγεγραμμένον πολύγωνον, οὗ τὸ πλῆθος τῶν πλευρῶν μετρείσθω ὑπὸ τετράδος, καὶ ἄλλο περι‐
25γεγραμμένον ὅμοιον τῷ ἐγγεγραμμένῳ, καθάπερ ἐπὶ τῶν πρότερον, ἡ δὲ τοῦ περιγεγραμμένου πολυγώνου πλευρὰ πρὸς τὴν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἐχέτω τοῦ ὃν ἔχει ἡ Κ πρὸς Ι, καὶ ἔστωσαν αἱ ΑΓ, ΒΔ διάμετροι πρὸς
ὀρθὰς ἀλλήλαις. Εἰ οὖν μενούσης τῆς ΑΓ διαμέτρου78

1

.

79

[Omitted graphic marker] περιενεχθείη τὸ ἐπίπεδον, ἐν ᾧ τὰ πολύγωνα, ἔσται σχήματα τὸ μὲν ἐγγεγραμμένον ἐν τῇ σφαίρᾳ, τὸ δὲ περιγεγραμμένον, καὶ ἕξει τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἤπερ ἡ πλευρὰ τοῦ
5περιγεγραμμένου πρὸς τὴν τοῦ ἐγγεγραμμένου εἰς τὸν ΑΒΓΔ κύκλον. Ἡ δὲ πλευρὰ πρὸς τὴν πλευρὰν ἐλάσσονα λόγον ἔχει ἤπερ ἡ Κ πρὸς τὴν Ι· ὥστε τὸ σχῆμα τὸ περι‐ γεγραμμένον ἐλάσσονα λόγον ἔχει ἢ τριπλασίονα τοῦ Κ πρὸς Ι. Ἔχει δὲ καὶ ἡ Κ πρὸς Η μείζονα λόγον ἢ τριπλάσιον
10τοῦ ὃν ἔχει ἡ Κ πρὸς Ι [τοῦτο γὰρ φανερὸν διὰ λημμάτων]· πολλῷ ἄρα τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἡ Κ πρὸς Η. Ἡ δὲ Κ πρὸς Η ἐλάσσονα
λόγον ἔχει ἤπερ ἡ σφαῖρα πρὸς τὸν Ξ κῶνον· καὶ ἐναλλάξ·79

1

.

80

ὅπερ ἀδύνατον· τὸ γὰρ σχῆμα τὸ περιγεγραμμένον μεῖζόν ἐστι τῆς σφαίρας, τὸ δὲ ἐγγεγραμμένον ἔλασσον τοῦ Ξ κώνου [διότι ὁ μὲν Ξ κῶνος τετραπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ ΑΒΓΔ κύκλῳ,
5ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, τὸ δὲ ἐγγε‐ γραμμένον σχῆμα ἔλασσον τοῦ εἰρημένου κώνου ἢ τετρα‐ πλάσιον]. Οὐκ ἄρα μείζων ἢ τετραπλασία ἡ σφαῖρα τοῦ εἰρημένου. Ἔστω, εἰ δυνατόν, ἐλάσσων ἢ τετραπλασία· ὥστε
10ἐλάσσων ἐστὶν ἡ σφαῖρα τοῦ Ξ κώνου. Εἰλήφθωσαν δὴ αἱ Κ, Η εὐθεῖαι, ὥστε τὴν Κ μείζονα εἶναι τῆς Η καὶ ἐλάσσονα λόγον ἔχειν πρὸς αὐτὴν τοῦ ὃν ἔχει ὁ Ξ κῶνος πρὸς τὴν σφαῖραν, καὶ αἱ Θ, Ι ἐκκείσθωσαν, καθὼς πρότερον, καὶ εἰς τὸν ΑΒΓΔ κύκλον νοείσθω πολύγωνον ἐγγεγραμμένον
15καὶ ἄλλο περιγεγραμμένον, ὥστε τὴν πλευρὰν τοῦ περι‐ γεγραμμένου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἔχειν ἤπερ ἡ Κ πρὸς Ι, καὶ τὰ ἄλλα κατεσκευασμένα τὸν αὐτὸν τρόπον τοῖς πρότερον· ἕξει ἄρα καὶ τὸ περιγεγραμμένον στερεὸν σχῆμα πρὸς τὸ
20ἐγγεγραμμένον τριπλασίονα λόγον ἤπερ ἡ πλευρὰ τοῦ περιγεγραμμένου περὶ τὸν ΑΒΓΔ κύκλον πρὸς τὴν τοῦ ἐγγεγραμμένου. Ἡ δὲ πλευρὰ πρὸς τὴν πλευρὰν ἐλάσσονα λόγον ἔχει ἤπερ ἡ Κ πρὸς Ι· ἕξει οὖν τὸ σχῆμα τὸ περι‐ γεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἢ
25τριπλάσιον τοῦ ὃν ἔχει ἡ Κ πρὸς τὴν Ι. Ἡ δὲ Κ πρὸς τὴν Η μείζονα λόγον ἔχει ἢ τριπλάσιον τοῦ ὃν ἔχει ἡ Κ πρὸς τὴν Ι· ὥστε ἐλάσσονα λόγον ἔχει τὸ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἢ ἡ Κ πρὸς τὴν
Η. Ἡ δὲ Κ πρὸς τὴν Η ἐλάσσονα λόγον ἔχει ἢ ὁ Ξ κῶνος80

1

.

81

πρὸς τὴν σφαῖραν· ὅπερ ἀδύνατον· τὸ μὲν γὰρ ἐγγεγραμ‐ μένον ἔλασσόν ἐστι τῆς σφαίρας, τὸ δὲ περιγεγραμμένον μεῖζον τοῦ Ξ κώνου. Οὐκ ἄρα οὐδὲ ἐλάσσων ἐστὶν ἢ τετραπλασία ἡ σφαῖρα τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος
5ἴσην τῷ ΑΒΓΔ κύκλῳ, ὕψος δὲ τὴν ἴσην τῇ ἐκ τοῦ κέντρου τῆς σφαίρας. Ἐδείχθη δὲ, ὅτι οὐδὲ μείζων· τετραπλασία ἄρα.
8t[ΠΟΡΙΣΜΑ.]
9Προδεδειγμένων δὲ τούτων φανερὸν ὅτι πᾶς κύλινδρος
10βάσιν μὲν ἔχων τὸν μέγιστον κύκλον τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας, ἡμιόλιός ἐστι τῆς σφαίρας καὶ ἡ ἐπιφάνεια αὐτοῦ μετὰ τῶν βάσεων ἡμιολία τῆς ἐπιφανείας τῆς σφαίρας. Ὁ μὲν γὰρ κύλινδρος ὁ προειρημένος ἑξαπλάσιός ἐστι
15τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὴν αὐτήν, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου, ἡ δὲ σφαῖρα δέδεικται τοῦ αὐτοῦ κώνου τετραπλασία οὖσα· δῆλον οὖν ὅτι ὁ κύλινδρος ἡμιόλιός ἐστι τῆς σφαίρας. Πάλιν, ἐπεὶ ἡ ἐπιφάνεια τοῦ κυλίνδρου χωρὶς τῶν βάσεων ἴση δέδεικται κύκλῳ, οὗ ἡ
20ἐκ τοῦ κέντρου μέση ἀνάλογόν ἐστι τῆς τοῦ κυλίνδρου πλευρᾶς καὶ τῆς διαμέτρου τῆς βάσεως, τοῦ δὲ εἰρημένου κυλίνδρου τοῦ περὶ τὴν σφαῖραν ἡ πλευρὰ ἴση ἐστὶ τῇ διαμέτρῳ τῆς βάσεως [δῆλον ὅτι ἡ μέση αὐτῶν ἀνάλογον ἴση γίνεται τῇ διαμέτρῳ τῆς βάσεως], ὁ δὲ κύκλος ὁ τὴν
25ἐκ τοῦ κέντρου ἔχων ἴσην τῇ διαμέτρῳ τῆς βάσεως τετρα‐ πλάσιός ἐστι τῆς βάσεως, τουτέστι τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ, ἔσται ἄρα καὶ ἡ ἐπιφάνεια τοῦ κυλίνδρου χωρὶς τῶν βάσεων τετραπλασία τοῦ μεγίστου κύκλου· ὅλη
ἄρα μετὰ τῶν βάσεων ἡ ἐπιφάνεια τοῦ κυλίνδρου ἑξαπλασία81

1

.

82

ἔσται τοῦ μεγίστου κύκλου. Ἔστιν δὲ καὶ ἡ τῆς σφαίρας ἐπιφάνεια τετραπλασία τοῦ μεγίστου κύκλου. Ὅλη ἄρα ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡμιολία ἐστὶ τῆς ἐπιφανείας τῆς σφαίρας.
5
λεʹ. Ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος εἰς τὸ τμῆμα τῆς σφαίρας ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ ἐγγεγραμμένου πολυγώνου ἐν τῷ τμήματι τοῦ μεγίστου
10κύκλου καὶ τῆς ἴσης πάσαις ταῖς παραλλήλοις τῇ βάσει τοῦ τμήματος σὺν τῇ ἡμισείᾳ τῆς τοῦ τμήματος βάσεως. Ἔστω σφαῖρα καὶ ἐν αὐτῇ τμῆμα, οὗ βάσις ὁ περὶ τὴν ΑΗ κύκλος [ἐγγεγράφθω σχῆμα εἰς αὐτό, οἷον εἴρηται, περιεχόμενον ὑπὸ κωνικῶν ἐπιφανειῶν], καὶ μέγιστος κύ‐
15κλος ὁ ΑΗΘ καὶ ἀρτιόπλευρον πολύγωνον τὸ ΑΓΕΘΖΔΗ χωρὶς τῆς ΑΗ πλευρᾶς, καὶ εἰλήφθω κύκλος ὁ Λ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΑΓ πλευρᾶς καὶ ὑπὸ πασῶν τῶν ΕΖ, ΓΔ καὶ ἔτι τῆς ἡμισείας τῆς βάσεως, τουτέστι τῆς ΑΚ· δεικτέον ὅτι ὁ κύκλος ἴσος
20ἐστὶ τῇ τοῦ σχήματος ἐπιφανείᾳ. [Omitted graphic marker]82

1

.

83

[Omitted graphic marker] Εἰλήφθω γὰρ κύκλος ὁ Μ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς ΕΘ πλευρᾶς καὶ τῆς ἡμισείας τῆς ΕΖ· γίνεται δὴ ὁ Μ κύκλος ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου, οὗ βάσις μὲν ὁ περὶ τὴν ΕΖ κύκλος, κορυφὴ δὲ τὸ Θ
5σημεῖον. Εἰλήφθω δὲ καὶ ἄλλος ὁ Ν, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΕΓ καὶ τῆς ἡμισείας συναμφοτέρου τῆς ΕΖ, ΓΔ· ἔσται οὖν οὗτος ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπι‐ πέδων τῶν κατὰ τὰς ΕΖ, ΓΔ. Καὶ ἄλλος ὁμοίως ὁ Ξ εἰλήφθω
10κύκλος, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς ΑΓ καὶ τῆς ἡμισείας συναμφοτέρων τῶν ΓΔ, ΑΗ· καὶ αὐτὸς οὖν ἴσος ἐστὶ τῇ κωνικῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΑΗ, ΓΔ. Πάντες οὖν οἱ κύκλοι ἴσοι ἔσονται τῇ ὅλῃ τοῦ σχήματος ἐπιφανείᾳ,
15καὶ αἱ ἐκ τῶν κέντρων αὐτῶν ἴσον δυνήσονται τῷ περιεχο‐ μένῳ ὑπὸ μιᾶς πλευρᾶς τῆς ΑΓ καὶ τῆς ἴσης ταῖς ΕΖ, ΓΔ καὶ τῇ ἡμισείᾳ τῆς βάσεως τῇ ΑΚ. Ἐδύνατο δὲ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον τῷ αὐτῷ χωρίῳ· ὁ ἄρα Λ κύκλος ἴσος ἔσται τοῖς Μ, Ν, Ξ κύκλοις· ὥστε καὶ τῇ
20ἐπιφανείᾳ τοῦ ἐγγεγραμμένου σχήματος.
λϛʹ. Τετμήσθω σφαῖρα μὴ διὰ τοῦ κέντρου ἐπιπέδῳ, καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΕΖ τέμνων πρὸς ὀρθὰς τὸ ἐπίπεδον τὸ τέμνον, καὶ ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα
25πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόγωνον χωρὶς τῆς βάσεως τῆς ΑΒ. Ὁμοίως δὴ τοῖς πρότερον, ἐὰν μενούσης τῆς ΓΖ περιενεχθῇ τὸ σχῆμα, αἱ μὲν Δ, Ε, Α, Β γωνίαι
κατὰ κύκλων οἰσθήσονται, ὧν διάμετροι αἱ ΔΕ, ΑΒ, αἱ δὲ83

1

.

84

[Omitted graphic marker] πλευραὶ τοῦ τμήματος κατὰ κωνικῆς ἐπιφανείας, καὶ ἔσται τὸ γενηθὲν σχῆμα στερεὸν ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον βάσιν μὲν ἔχον κύκλον, οὗ διάμετρος ἡ ΑΒ, κορυφὴν δὲ τὸ Γ. Ὁμοίως δὴ τοῖς πρότερον τὴν ἐπιφάνειαν
5ἐλάσσονα ἕξει τῆς τοῦ τμήματος ἐπιφανείας τοῦ περιλαμ‐ βάνοντος· τὸ γὰρ αὐτὸ πέρας αὐτῶν ἐστιν ἐν ἐπιπέδῳ τοῦ τε τμήματος καὶ τοῦ σχήματος ἡ περιφέρεια τοῦ κύκλου, οὗ διάμετρος ἡ ΑΒ, καὶ ἐπὶ τὰ αὐτὰ κοῖλαι ἀμφότεραί εἰσιν αἱ ἐπιφάνειαι, καὶ περιλαμβάνεται ἡ ἑτέρα ὑπὸ
10τῆς ἑτέρας.
λζʹ. Ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος ἐν τῷ τμήματι τῆς σφαίρας ἐλάσσων ἐστὶ τοῦ κύκλου, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ
15τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος. Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΕΖ, καὶ ἔστω τμῆμα ἐν τῇ σφαίρᾳ, οὗ βάσις ὁ περὶ διάμετρον τὴν ΑΒ [καὶ ἐγγεγράφθω εἰς αὐτὸ τὸ εἰρημένον σχῆμα, καὶ ἐν
20τῷ τμήματι τοῦ κύκλου πολύγωνον], καὶ τὰ λοιπὰ τὰ αὐτὰ84

1

.

85

διαμέτρου μὲν τῆς σφαίρας οὔσης τῆς ΘΛ, ἐπεζευγμένων δὲ τῶν ΛΕ, ΘΑ, καὶ ἔστω κύκλος ὁ Μ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἔστω τῇ ΑΘ· δεικτέον ὅτι ὁ Μ κύκλος μείζων ἐστὶ τῆς τοῦ σχήματος ἐπιφανείας. [Omitted graphic marker]
5 Ἡ γὰρ ἐπιφάνεια τοῦ σχήματος δέδεικται ἴση οὖσα κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΕΘ καὶ τῶν ΕΖ, ΓΔ, ΚΑ· τὸ δὲ ὑπὸ τῆς ΕΘ καὶ τῶν ΕΖ, ΓΔ, ΚΑ δέδεικται ἴσον τῷ ὑπὸ τῶν ΕΛ, ΚΘ περιεχο‐ μένῳ· τὸ δὲ ὑπὸ τῶν ΕΛ, ΚΘ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΑΘ
10[καὶ γὰρ τοῦ ΛΘ, ΚΘ]· φανερὸν οὖν ὅτι ἡ ἐκ τοῦ κέντρου τοῦ κύκλου, ὅς ἐστιν ἴσος τῇ ἐπιφανείᾳ τοῦ σχήματος, ἐλάσσων ἐστὶ τῆς ἐκ τοῦ κέντρου τοῦ Μ· δῆλον ἄρα ὅτι ὁ Μ κύκλος μείζων ἐστὶ τῆς ἐπιφανείας τοῦ σχήματος.
ληʹ.
15 Τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ τμήματι ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον σὺν τῷ κώνῳ τῷ βάσιν μὲν τὴν
αὐτὴν ἔχοντι τῷ σχήματι, κορυφὴν δὲ τὸ κέντρον τῆς85

1

.

86

σφαίρας, ἴσον ἐστὶ τῷ κώνῳ τῷ βάσιν ἔχοντι ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τῶν τοῦ πολυγώνου καθέτῳ ἠγμένῃ.
5 Ἔστω γὰρ σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος καὶ τμῆμα ἔλασσον ἡμικυκλίου τὸ ΑΒΓ καὶ κέντρον τὸ Ε, καὶ ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα πολύγωνον ἀρτιόπλευρον χωρὶς τῆς ΑΓ ὁμοίως τοῖς πρότερον, καὶ μενούσης τῆς ΒΛ περιενεχθεῖσα ἡ σφαῖρα ποιείτω σχῆμά τι ὑπὸ κωνικῶν
10ἐπιφανειῶν περιεχόμενον, καὶ ἀπὸ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν ΑΓ κῶνος ἀναγεγράφθω κορυφὴν ἔχων τὸ κέντρον, καὶ εἰλήφθω κῶνος ὁ Κ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ
15τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ Ε κέντρου ἐπὶ μίαν πλευρὰν τοῦ πολυ‐ γώνου καθέτῳ ἠγμένῃ· δεικτέον ὅτι ὁ Κ κῶνος
20ἴσος ἐστὶ τῷ περιεχομένῳ σχήματι σὺν τῷ κώνῳ τῷ ΑΕΓ. Ἀναγεγράφθωσαν δὴ καὶ κῶνοι ἀπὸ τῶν κύ‐
25κλων τῶν περὶ διαμέ‐ τρους τὰς ΘΗ, ΔΖ κορυ‐ φὴν ἔχοντες τὸ Ε σημεῖον· οὐκοῦν ὁ μὲν ΗΒΘΕ ῥόμβος στερεὸς
30ἴσος ἐστὶ κώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ ἐπιφανείᾳ τοῦ86

1

.

87

ΗΒΘ κώνου, τὸ ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΗΒ ἀγομένῃ καθέτῳ, τὸ δὲ περίλειμμα τὸ περιεχόμενον ὑπὸ τῆς ἐπι‐ φανείας τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΗΘ, ΖΔ καὶ τῶν κωνικῶν τῶν ΖΕΔ, ΗΕΘ ἴσον ἐστὶ
5κώνῳ, οὗ ἡ βάσις μέν ἐστιν ἴση τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΗΘ, ΖΔ, ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΖΗ καθέτῳ ἠγμένῃ. Πάλιν τὸ περίλειμμα τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΖΔ, ΑΓ καὶ τῶν κω‐
10νικῶν τῶν ΑΕΓ, ΖΕΔ ἴσον ἐστὶ κώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΖΔ, ΑΓ, ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΖΑ καθέτῳ ἠγμένῃ· οἱ οὖν εἰρημένοι κῶνοι ἴσοι ἔσονται τῷ σχήματι μετὰ τοῦ ΑΕΓ κώνου. Καὶ ὕψος μὲν ἴσον
15ἔχουσιν τῇ ἀπὸ τοῦ Ε ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ, τὰς δὲ βάσεις ἴσας τῇ ἐπιφανείᾳ του ΑΖΗΒΘΔΓ σχήματος· ἔχει δὲ καὶ ὁ Κ κῶνος τὸ αὐτὸ ὕψος καὶ βάσιν ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος· ἴσος ἄρα ἐστὶν ὁ κῶνος τοῖς εἰρημένοις κώνοις. Οἱ δὲ εἰρημένοι
20κῶνοι ἐδείχθησαν ἴσοι τῷ σχήματι καὶ τῷ ΑΕΓ κώνῳ· καὶ ὁ Κ ἄρα κῶνος ἴσος ἐστὶ τῷ τε σχήματι καὶ τῷ ΑΕΓ κώνῳ.
22tΠΟΡΙΣΜΑ.
23 Ἐκ δὴ τούτου φανερὸν ὅτι ὁ κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς
25τοῦ τμήματος ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς87

1

.

88

ἐστι βάσις τοῦ τμήματος, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, μείζων ἐστὶ τοῦ ἐγγεγραμμένου σχήματος σὺν τῷ κώνῳ· ὁ γὰρ προειρημένος κῶνος μείζων ἐστὶ τοῦ κώνου τοῦ ἴσου τῷ σχήματι σὺν τῷ κώνῳ τῷ βάσιν μὲν
5ἔχοντι τὴν βάσιν τοῦ τμήματος, τὴν δὲ κορυφὴν πρὸς τῷ κέντρῳ, τουτέστι τοῦ τὴν βάσιν μὲν ἔχοντος ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ κέντρου ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· ἥ τε γὰρ βάσις τῆς βάσεως μείζων ἐστὶ [δέδεικται γὰρ τοῦτο] καὶ τὸ
10ὕψος τοῦ ὕψους.
λθʹ. Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓ, καὶ τετμήσθω ἔλασσον ἡμικυκλίου, ὃ ἀποτέμνει ἡ ΑΒ, καὶ κέντρον τὸ Δ, καὶ ἀπὸ τοῦ κέντρου τοῦ Δ ἐπὶ τὰ Α, Β
15ἐπεζεύχθωσαν αἱ ΑΔ, ΔΒ, καὶ περὶ τὸν γεννηθέντα τομέα περιγεγράφθω πολύγωνον καὶ περὶ αὐτὸ κύκλος· ἕξει δὴ τὸ αὐτὸ κέντρον τῷ ΑΒΓ κύκλῳ. Ἐὰν δὴ μενούσης τῆς ΕΚ περιενεχθὲν τὸ πολύγωνον εἰς τὸ αὐτὸ πάλιν ἀποκατα‐ σταθῇ, ὁ περιγεγραμμένος κύκλος κατὰ ἐπιφανείας
20οἰσθήσεται σφαίρας, καὶ αἱ γωνίαι τοῦ πολυγώνου κύκλους γράψουσιν, ὧν αἱ διάμετροι ἐπιζευγνύουσιν τὰς γωνίας τοῦ πολυγώνου οὖσαι παράλληλοι τῇ ΑΒ, τὰ δὲ σημεῖα, καθ’ ἃ ἅπτονται τοῦ ἐλάσσονος κύκλου αἱ τοῦ πολυγώνου πλευραί, κύκλους γράφουσιν ἐν τῇ ἐλάσσονι σφαίρᾳ, ὧν
25διάμετροι ἔσονται αἱ ἐπιζευγνύουσαι τὰς ἁφὰς παράλληλοι οὖσαι τῇ ΑΒ, αἱ δὲ πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται, καὶ ἔσται τὸ περιγραφὲν σχῆμα ὑπὸ κωνικῶν
ἐπιφανειῶν περιεχόμενον, οὗ βάσις ὁ περὶ τὴν ΖΗ κύκλος·88

1

.

89

ἡ δὴ τοῦ εἰρημένου σχήματος ἐπιφάνεια μείζων ἐστὶ τῆς τοῦ ἐλάσσονος τμήματος ἐπιφανείας, οὗ βάσις ὁ περὶ τὴν ΑΒ κύκλος. [Omitted graphic marker] Ἤχθωσαν γὰρ ἐφαπτόμεναι αἱ ΑΜ, ΒΝ· κατὰ κωνικῆς
5ἄρα ἐπιφανείας οἰσθήσονται, καὶ τὸ σχῆμα τὸ γενηθὲν ὑπὸ τοῦ πολυγώνου τοῦ ΑΜΘΕΛΝΒ μείζονα ἕξει τὴν ἐπιφά‐ νειαν τοῦ τμήματος τῆς σφαίρας, οὗ βάσις ὁ περὶ διάμετρον τὴν ΑΒ κύκλος [πέρας γὰρ ἐν ἑνὶ ἐπιπέδῳ τὸ αὐτὸ ἔχουσιν τὸν περὶ διάμετρον τὴν ΑΒ κύκλον, καὶ περιλαμβάνεται τὸ
10τμῆμα ὑπὸ τοῦ σχήματος]. Ἀλλ’ ἡ γεγενημένη ὑπὸ τῶν ΖΜ, ΗΝ ἐπιφάνεια κώνου μείζων ἐστὶ τῆς γεγενημένης ὑπὸ τῶν ΜΑ, ΝΒ· ἡ μὲν γὰρ ΖΜ τῆς ΜΑ μείζων ἐστὶ [ὑπὸ γὰρ ὀρθὴν ὑποτείνει], ἡ δὲ ΝΗ τῆς ΝΒ, ὅταν δὲ τοῦτο ᾖ, μείζων γίνεται ἡ ἐπιφάνεια τῆς ἐπιφανείας [ταῦτα γὰρ δέδεικται
15ἐν τοῖς λήμμασιν]. Δῆλον οὖν ὅτι καὶ τοῦ περιγεγραμ‐ μένου σχήματος ἡ ἐπιφάνεια μείζων ἐστὶ τῆς τοῦ τμήματος
ἐπιφανείας τῆς ἐλάσσονος σφαίρας.89

1

.

90

(1t)

ΠΟΡΙΣΜΑ.
2 Καὶ φανερὸν ὅτι ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος τοῦ περὶ τὸν τομέα ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε μιᾶς πλευρᾶς τοῦ
5πολυγώνου καὶ τῶν ἐπιζευγνυουσῶν πασῶν τὰς γωνίας τοῦ πολυγώνου καὶ ἔτι τῆς ἡμισείας τῆς βάσεως τοῦ εἰρημένου πολυγώνου [τὸ γὰρ ὑπὸ τοῦ πολυγώνου γεγραμμένον σχῆμα ἐγγεγραμμένον ἐστὶν εἰς τὸ τμῆμα τῆς μείζονος σφαίρας, τοῦτο δὲ δῆλον διὰ τὸ προγεγραμμένον].
10
μʹ. Τοῦ περιγεγραμμένου σχήματος τῷ τομεῖ ἡ ἐπιφάνεια μείζων ἐστὶ κύκλου, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἠγμένῃ ἐπὶ τὴν περιφέρειαν
τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος. [Omitted graphic marker]90

1

.

91

Ἔστω γὰρ σφαῖρα καὶ μέγιστος κύκλος ἐπ’ αὐτῆς ὁ ΑΒΓΔ καὶ κέντρον τὸ Ε, καὶ περὶ τὸν τομέα περιγεγράφθω τὸ ΛΚΖ πολύγωνον, καὶ περὶ αὐτὸ κύκλος περιγεγράφθω, καὶ γεγενήσθω σχῆμα, καθάπερ πρότερον, καὶ ἔστω κύκλος
5ὁ Ν, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ πασῶν τῶν ἐπιζευ‐ γνυουσῶν σὺν τῇ ἡμισείᾳ τῆς ΚΛ. Ἀλλὰ τὸ εἰρημένον χω‐ ρίον ἴσον ἐστὶ τῷ ὑπὸ τῆς ΜΘ καὶ ΖΗ [ὃ δή ἐστιν ὕψος τοῦ τμήματος τῆς μείζονος σφαίρας· τοῦτο γὰρ προδέδεικται].
10Τοῦ ἄρα Ν κύκλου ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ ὑπὸ ΜΘ, ΗΖ περιεχομένῳ. Ἀλλ’ ἡ μὲν ΗΖ μείζων ἐστὶ τῆς ΔΞ [ὅ ἐστιν ὕψος τοῦ ἐλάσσονος τμήματος· ἐὰν γὰρ ἐπι‐ ζεύξωμεν τὴν ΚΖ, ἔσται παράλληλος τῇ ΔΑ. Ἔστιν δὲ καὶ ἡ ΑΒ τῇ ΚΛ παράλληλος, καὶ κοινὴ ἡ ΖΕ· ὅμοιον ἄρα τὸ
15ΖΚΗ τρίγωνον τῷ ΔΑΞ τριγώνῳ. Καί ἐστιν μείζων ἡ ΖΚ τῆς ΑΔ· μείζων ἄρα καὶ ἡ ΖΗ τῆς ΔΞ], ἴση δὲ ἡ ΜΘ τῇ διαμέτρῳ τῇ ΓΔ [ἐὰν γὰρ ἐπιζευχθῇ ἡ ΕΟ, ἐπεὶ ἴση ἐστὶν ἡ μὲν ΜΟ τῇ ΟΖ, ἡ δ ΘΕ τῇ ΕΖ, παράλληλος ἄρα ἐστὶν ἡ ΕΟ τῇ ΜΘ· διπλασία ἄρα ἐστὶν ἡ ΜΘ τῇ ΕΟ. Ἀλλὰ καὶ
20ἡ ΓΔ διπλασία ἐστὶν τῆς ΕΟ· ἴση ἄρα ἐστὶν ἡ ΜΘ τῇ ΓΔ], τὸ δὲ ὑπὸ τῶν ΓΔ, ΔΞ ἴσον τῷ ἀπὸ τῆς ΑΔ· ἡ ἄρα τοῦ σχήματος τοῦ ΚΖΛ ἐπιφάνεια μείζων ἐστὶ τοῦ κύκλου, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμή‐ ματος ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς ἐστι
25βάσις τοῦ τμήματος, τοῦ περὶ διάμετρον τὴν ΑΒ· ὁ γὰρ Ν κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ περιγεγραμμένου
περὶ τὸν τομέα σχήματος.91

1

.

92

(1t)

ΠΟΡΙΣΜΑ αʹ.
2 Γίνεται δὴ καὶ τὸ περιγεγραμμένον σχῆμα περὶ τὸν τομέα σὺν τῷ κώνῳ, οὗ βάσις ὁ περὶ διάμετρον τὴν ΚΛ κύκλος, κορυφὴ δὲ τὸ κέντρον, ἴσον κώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ
5τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ κέντρου ἐπὶ τὴν πλευρὰν καθέτῳ ἠγμένῃ [ἣ δὴ ἴση ἐστὶ τῇ ἐκ τοῦ κέντρου τῆς σφαίρας· τὸ γὰρ περιγεγραμμένον σχῆμα τῷ τομεῖ ἐγγεγραμμένον ἐστὶν εἰς τὸ τμῆμα τῆς μείζονος σφαί‐ ρας, ἧς κέντρον ἐστὶ τὸ αὐτό· δῆλον οὖν τὸ λεγόμενόν
10ἐστιν ἐκ τοῦ προγεγραμμένου].
11tΠΟΡΙΣΜΑ βʹ.
12 Ἐκ τούτου δὲ φανερὸν ὅτι τὸ περιγεγραμμένον σχῆμα σὺν τῷ κώνῳ μεῖζόν ἐστι κώνου τοῦ βάσιν μὲν ἔχοντος τὸν κύκλον, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς
15τοῦ τμήματος τῆς ἐλάσσονος σφαίρας ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος, ὕψος δὲ τῇ ἐκ τοῦ κέντρου· ὁ γὰρ ἴσος κῶνος τῷ σχήματι σὺν τῷ κώνῳ τὴν μὲν βάσιν μείζονα ἕξει τοῦ εἰρημένου κύκλου, τὸ δὲ ὕψος ἴσον τῇ ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας.
20
μαʹ. Ἔστω πάλιν σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος καὶ τμῆμα ἔλασσον ἡμικυκλίου τὸ ΑΒΓ καὶ κέντρον τὸ Δ, καὶ εἰς τὸν ΑΒΓ τομέα ἐγγεγράφθω πολύγωνον ἀρτιόγωνον, καὶ τούτῳ ὅμοιον περιγεγράφθω, καὶ παράλληλοι ἔστωσαν
25αἱ πλευραὶ ταῖς πλευραῖς, καὶ κύκλος περιγεγράφθω περὶ92

1

.

93

τὸ περιγεγραμμένον πολύγωνον, καὶ ὁμοίως τοῖς πρότερον μενούσης τῆς ΗΒ περιενεχθέντες οἱ κύκλοι ποιείτωσαν σχήματα ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενα· δεικτέον ὅτι ἡ τοῦ περιγεγραμμένου σχήματος ἐπιφάνεια πρὸς τὴν
5τοῦ ἐγγεγραμμένου σχήματος ἐπιφάνειαν διπλασίονα λό‐ γον ἔχει ἢ ἡ πλευρὰ ἡ τοῦ περιγεγραμμένου πολυγώνου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου πολυγώνου, τὸ δὲ σχῆμα σὺν τῷ κώνῳ τριπλασίονα λόγον ἔχει τοῦ αὐτοῦ. [Omitted graphic marker] Ἔστω γὰρ ὁ Μ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται
10τῷ ὑπό τε μιᾶς πλευρᾶς τοῦ περιγεγραμμένου πολυγώνου καὶ πασῶν τῶν ἐπιζευγνυουσῶν τὰς γωνίας καὶ ἔτι τῆς
ἡμισείας τῆς ΕΖ· ἔσται δὴ ὁ Μ κύκλος ἴσος τῇ ἐπιφανείᾳ93

1

.

94

τοῦ περιγεγραμμένου σχήματος. Εἰλήφθω δὴ καὶ ὁ Ν κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ ἐγγεγραμμένου πολυγώνου καὶ πασῶν τῶν ἐπιζευγνυουσῶν τὰς γωνίας σὺν τῇ ἡμισείᾳ τῆς
5ΑΓ· ἔσται δὴ καὶ οὗτος ἴσος τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμέ‐ νου σχήματος. Ἀλλὰ τὰ εἰρημένα χωρία ἐστὶ πρὸς ἄλληλα ὡς τὸ ἀπὸ τῆς ΕΚ πλευρᾶς πρὸς τὸ ἀπὸ τῆς ΑΛ πλευρᾶς [καὶ ὡς ἄρα τὸ πολύγωνον πρὸς τὸ πολύγωνον, ὁ Μ κύκλος πρὸς τὸν Ν κύκλον]· φανερὸν οὖν ὅτι καὶ ἡ ἐπιφάνεια τοῦ
10περιγεγραμμένου σχήματος πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου σχήματος διπλασίονα λόγον ἔχει ἤπερ ἡ ΕΚ πρὸς ΑΛ [τὸν δὲ αὐτόν, ὃν καὶ τὸ πολύγωνον]. Ἔστω πάλιν κῶνος ὁ Ξ βάσιν μὲν ἔχων τῷ Μ ἴσην, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας·
15ἴσος δὴ οὗτός ἐστιν ὁ κῶνος τῷ περιγεγραμμένῳ σχήματι σὺν τῷ κώνῳ, οὗ βάσις ὁ περὶ τὴν ΕΖ κύκλος, κορυφὴ δὲ τὸ Δ. Καὶ ἔστω ἄλλος κῶνος ὁ Ο βάσιν μὲν ἴσην ἔχων τῷ Ν, ὕψος δὲ τὴν ἀπὸ τοῦ Δ ἐπὶ τὴν ΑΛ κάθετον ἠγμένην· ἔσται δὴ καὶ οὗτος ἴσος τῷ ἐγγεγραμμένῳ σχήματι σὺν τῷ
20κώνῳ, οὗ βάσις ὁ περὶ διάμετρον τὴν ΑΓ κύκλος, κορυφὴ δὲ τὸ Δ κέντρον· ταῦτα γὰρ πάντα προγέγραπται. Καὶ [ἐπεί] ἐστιν ὡς ἡ ΕΚ πρὸς τὴν ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας οὕτως ἡ ΑΛ πρὸς τὴν ἀπὸ τοῦ κέντρου [τοῦ Δ] ἐπὶ τὴν ΑΛ κάθετον ἠγμένην, ἐδείχθη δὲ ὡς ἡ ΕΚ πρὸς τὴν
25ΑΛ οὕτως ἡ ἐκ τοῦ κέντρου τοῦ Μ κύκλου πρὸς τὴν ἐκ τοῦ κέντρου τοῦ Ν κύκλου [καὶ ἡ διάμετρος πρὸς τὴν διάμε‐ τρον]· ἔσται ἄρα ὡς ἡ διάμετρος τοῦ κύκλου, ὅς ἐστι βάσις τοῦ Ξ, πρὸς τὴν διάμετρον τοῦ κύκλου, ὅς ἐστι
βάσις τοῦ Ο, οὕτως τὸ ὕψος τοῦ Ξ κώνου πρὸς τὸ ὕψος τοῦ94

1

.

95

Ο κώνου [ὅμοιοι ἄρα εἰσὶν οἱ κῶνοι]. Ὁ Ξ ἄρα κῶνος πρὸς τὸν Ο κῶνον τριπλασίονα λόγον ἔχει ἤπερ ἡ διάμετρος πρὸς τὴν διάμετρον· φανερὸν οὖν ὅτι καὶ τὸ σχῆμα τὸ περιγεγραμμένον σὺν τῷ κώνῳ πρὸς τὸ ἐγγεγραμμένον
5σὺν τῷ κώνῳ τριπλασίονα λόγον ἔχει ἤπερ ἡ ΕΚ πρὸς ΑΛ.
μβʹ. Παντὸς τμήματος σφαίρας ἐλάσσονος ἡμισφαιρίου ἡ ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ τὴν περιφέρειαν
10ἠγμένῃ τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος τῆς σφαίρας. Ἔστω σφαῖρα καὶ μέγιστος ἐν αὐτῇ κύκλος ὁ ΑΒΓ καὶ τμῆμα ἐν αὐτῇ ἔλασσον ἡμισφαιρίου, οὗ βάσις ὁ περὶ τὴν ΑΓ κύκλος πρὸς ὀρθὰς ὢν τῷ ΑΒΓ κύκλῳ, καὶ εἰλήφθω
15κύκλος ὁ Ζ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΑΒ· δεῖ δὴ δεῖξαι ὅτι ἡ ἐπιφάνεια τοῦ ΑΒΓ τμήματος ἴση ἐστὶ τῷ Ζ
κύκλῳ. [Omitted graphic marker]95

1

.

96

Εἰ γὰρ μή, ἔστω μείζων ἡ ἐπιφάνεια τοῦ Ζ κύκλου, καὶ εἰλήφθω τὸ Δ κέντρον, καὶ ἀπὸ τοῦ Δ ἐπὶ τὰ Α, Γ ἐπιζευχ‐ θεῖσαι ἐκβεβλήσθωσαν· καὶ δύο μεγεθῶν ἀνίσων ὄντων, τῆς τε ἐπιφανείας τοῦ τμήματος καὶ τοῦ Ζ κύκλου, ἐγγεγράφθω
5εἰς τὸν ΑΒΓ τομέα πολύγωνον ἰσόπλευρον καὶ ἀρτιογώνιον, καὶ ἄλλο τούτῳ ὅμοιον περιγεγράφθω, ὥστε τὸ περιγεγραμ‐ μένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν ἤπερ ἡ ἐπιφάνεια τοῦ τμήματος τῆς σφαίρας πρὸς τὸν Ζ κύκλον, περιενεχθέντος δὲ τοῦ κύκλου, ὡς καὶ πρότερον, ἔσται
10δύο σχήματα ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενα, ὧν τὸ μὲν περιγεγραμμένον, τὸ δὲ ἐγγεγραμμένον, καὶ ἡ τοῦ περιγεγραμμένου σχήματος ἐπιφάνεια πρὸς τὴν τοῦ ἐγγεγραμμένου ἔσται ὡς τὸ περιγεγραμμένον πολύγωνον πρὸς τὸ ἐγγεγραμμένον· ἑκάτερος γὰρ τῶν λόγων διπλά‐
15σιός ἐστι τοῦ ὃν ἔχει ἡ τοῦ περιγεγραμμένου πολυγώνου πλευρὰ πρὸς τὴν τοῦ ἐγγεγραμμένου πλευράν. Ἀλλὰ τὸ περιγεγραμμένον πολύγωνον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχει ἤπερ ἡ τοῦ εἰρημένου τμήματος ἐπιφάνεια πρὸς τὸν Ζ κύκλον, μείζων δέ ἐστιν ἡ τοῦ
20περιγεγραμμένου σχήματος ἐπιφάνεια τῆς ἐπιφανείας τοῦ τμήματος· καὶ ἡ τοῦ ἐγγεγραμμένου σχήματος ἐπιφάνεια ἄρα μείζων ἐστὶ τοῦ Ζ κύκλου· ὅπερ ἀδύνατον· δέδεικται γὰρ ἡ εἰρημένη τοῦ σχήματος ἐπιφάνεια ἐλάσσων οὖσα τοῦ τηλικούτου κύκλου.
25 Ἔστω πάλιν ὁ κύκλος μείζων τῆς ἐπιφανείας, καὶ περιγεγράφθω καὶ ἐγγεγράφθω ὅμοια πολύγωνα, καὶ τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἐχέτω τοῦ ὃν ἔχει ὁ κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ τμήματος. Οὐκ ἄρα μείζων ἡ ἐπιφάνεια τοῦ Ζ κύκλου.
30Ἐδείχθη δὲ ὡς οὐδὲ ἐλάσσων· ἴση ἄρα.96

1

.

97

μγʹ. Καὶ ἐὰν μεῖζον ἡμισφαιρίου ᾖ τμῆμα, ὁμοίως αὐτοῦ ἡ ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἔσται τῇ ἀπὸ τῆς κορυφῆς ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ
5κύκλου, ὅς ἐστι βάσις τοῦ τμήματος. [Omitted graphic marker] Ἔστω γὰρ σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος, καὶ νοείσθω τετμημένη ἐπιπέδῳ ὀρθῷ τῷ κατὰ τὴν ΑΔ, καὶ τὸ ΑΒΔ ἔλασσον ἔστω ἡμισφαιρίου, καὶ διάμετρος ἡ ΒΓ πρὸς ὀρθὰς τῇ ΑΔ, καὶ ἀπὸ τῶν Β, Γ ἐπὶ τὸ Α ἐπεζεύχθωσαν αἱ
10ΒΑ, ΑΓ, καὶ ἔστω ὁ μὲν Ε κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΑΒ, ὁ δὲ Ζ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΑΓ, ὁ δὲ Η κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΒΓ· καὶ ὁ Η ἄρα κύκλος ἴσος ἐστὶ τοῖς δυσὶ κύκλοις τοῖς Ε, Ζ. Ὁ δὲ Η κύκλος ἴσος ἐστὶν ὅλῃ τῇ ἐπιφανείᾳ τῆς σφαίρας
15[ἐπειδήπερ ἑκατέρα τετραπλασία ἐστὶ τοῦ περὶ διάμετρον τὴν ΒΓ κύκλου], ὁ δὲ Ε κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΑΒΔ τμήματος [δέδεικται γὰρ τοῦτο ἐπὶ τοῦ ἐλάσσονος ἡμισφαιρίου]· λοιπὸς ἄρα ὁ Ζ κύκλος ἴσος ἐστὶ τῇ τοῦ
ΑΓΔ τμήματος ἐπιφανείᾳ, ὃ δή ἐστι μεῖζον ἡμισφαιρίου.97

1

.

98

μδʹ. Παντὶ τομεῖ σφαίρας ἴσος ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ τμήματος τῆς σφαίρας τοῦ κατὰ τὸν τομέα, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας.
5 Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΔ καὶ κέντρον τὸ Γ καὶ κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ κατὰ τὴν ΑΒΔ περιφέρειαν ἐπιφανείᾳ, ὕψος δὲ ἴσον τῇ ΒΓ· δεικτέον ὅτι ὁ τομεὺς ὁ ΑΒΓΔ ἴσος ἐστὶ τῷ
εἰρημένῳ κώνῳ. [Omitted graphic marker]98

1

.

99

Εἰ γὰρ μή, ἔστω μείζων ὁ τομεὺς τοῦ κώνου, καὶ κείσθω ὁ Θ κῶνος, οἷος εἴρηται· δύο δὴ μεγεθῶν ἀνίσων ὄντων, τοῦ τομέως καὶ τοῦ Θ κώνου, εὑρήσθωσαν δύο γραμμαὶ αἱ Δ, Ε, μείζων δὲ ἡ Δ τῆς Ε, καὶ ἐλάσσονα λόγον ἐχέτω ἡ
5Δ πρὸς Ε ἤπερ ὁ τομεὺς πρὸς τὸν κῶνον, καὶ εἰλήφθωσαν δύο γραμμαὶ αἱ Ζ, Η, ὅπως τῷ ἴσῳ ὑπερέχῃ ἡ Δ τῆς Ζ καὶ ἡ Ζ τῆς Η καὶ ἡ Η τῆς Ε, καὶ περὶ τὸν ἐπίπεδον τομέα τοῦ κύκλου περιγεγράφθω πολύγωνον ἰσόπλευρον καὶ ἀρτιογώνιον, καὶ τούτῳ ὅμοιον ἐγγεγράφθω, ὅπως ἡ τοῦ
10περιγεγραμμένου πλευρὰ ἐλάσσονα λόγον ἔχῃ πρὸς τὴν τοῦ ἐγγεγραμμένου τοῦ ὃν ἔχει ἡ Δ πρὸς Ζ, καὶ ὁμοίως τοῖς πρότερον περιενεχθέντος τοῦ κύκλου γεγενήσθω δύο σχήματα ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενα· τὸ ἄρα περιγεγραμμένον σὺν τῷ κώνῳ τῷ κορυφὴν ἔχοντι τὸ Γ
15σημεῖον πρὸς τὸ ἐγγεγραμμένον σὺν τῷ κώνῳ τριπλασίονα λόγον ἔχει τοῦ ὃν ἔχει ἡ πλευρὰ τοῦ περιγεγραμμένου πολυγώνου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου. Ἀλλὰ ἡ τοῦ περιγεγραμμένου ἐλάσσονα λόγον ἔχει ἤπερ ἡ Δ πρὸς Ζ· ἐλάσσονα λόγον ἄρα ἕξει ἢ τριπλάσιον τὸ
20εἰρημένον στερεὸν σχῆμα τοῦ τῆς Δ πρὸς Ζ. Ἡ δὲ Δ πρὸς Ε μείζονα λόγον ἔχει ἢ τριπλάσιον τοῦ τῆς Δ πρὸς Ζ· τὸ ἄρα περιγεγραμμένον σχῆμα στερεὸν τῷ τομεῖ πρὸς τὸ ἐγγεγραμμένον σχῆμα ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἡ Δ πρὸς Ε. Ἡ δὲ Δ πρὸς Ε ἐλάσσονα λόγον ἔχει
25ἢ ὁ στερεὸς τομεὺς πρὸς τὸν Θ κῶνον· μείζονα ἄρα λόγον ἔχει ὁ στερεὸς τομεὺς πρὸς τὸν Θ κῶνον ἢ τὸ περιγεγραμ‐ μένον τῷ τομεῖ σχῆμα πρὸς τὸ ἐγγεγραμμένον. Καὶ ἐναλλάξ· μεῖζον δέ ἐστι τὸ περιγεγραμμένον στερεὸν σχῆμα τοῦ
τμήματος· καὶ τὸ ἐγγεγραμμένον ἄρα σχῆμα ἐν τῷ τομεῖ99

1

.

100

μεῖζόν ἐστι τοῦ Θ κώνου· ὅπερ ἀδύνατον· δέδεικται γὰρ ἐν τοῖς ἄνω ἔλασσον ὂν τοῦ τηλικούτου κώνου [τουτέστι τοῦ ἔχοντος βάσιν μὲν κύκλον, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ τὴν περιφέ‐
5ρειαν ἐπιζευγνυμένῃ εὐθείᾳ τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας· οὗτος δέ ἐστιν ὁ εἰρημένος κῶνος ὁ Θ· βάσιν τε γὰρ ἔχει κύκλον ἴσον τῇ ἐπιφανείᾳ τοῦ τμήματος, τουτέστι τῷ εἰρημένῳ κύκλῳ, καὶ ὕψος ἴσον τῇ ἐκ τοῦ κέντρου τῆς
10σφαίρας]· οὐκ ἄρα ὁ στερεὸς τομεὺς μείζων ἐστὶ τοῦ Θ κώνου. Ἔστω δὴ πάλιν ὁ Θ κῶνος τοῦ στερεοῦ τομέως μείζων. Πάλιν δὴ ὁμοίως ἡ Δ πρὸς τὴν Ε μείζων αὐτῆς οὖσα ἐλάσσονα λόγον ἐχέτω τοῦ ὃν ἔχει ὁ κῶνος πρὸς τὸν
15τομέα, καὶ ὁμοίως εἰλήφθωσαν αἱ Ζ, Η, ὥστε εἶναι τὰς διαφορὰς τὰς αὐτάς, καὶ τοῦ περιγεγραμμένου περὶ τὸν ἐπίπεδον τομέα πολυγώνου ἀρτιογώνου ἡ πλευρὰ πρὸς τὴν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἐχέτω τοῦ ὃν ἔχει ἡ Δ πρὸς Ζ [καὶ γεγενήσθω τὰ περὶ τὸν στερεὸν
20τομέα στερεὰ σχήματα]· ὁμοίως οὖν δείξομεν ὅτι τὸ περιγεγραμμένον περὶ τὸν τομέα στερεὸν σχῆμα πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἡ Δ πρὸς Ε καὶ τοῦ ὃν ἔχει ὁ Θ κῶνος πρὸς τὸν τομέα [ὥστε καὶ ὁ τομεὺς πρὸς τὸν κῶνον ἐλάσσονα λόγον ἔχει ἤπερ τὸ
25ἐγγεγραμμένον στερεὸν ἐν τῷ τμήματι πρὸς τὸ περιγε‐ γραμμένον]. Μείζων δέ ἐστιν ὁ τομεὺς τοῦ ἐγγεγραμμένου εἰς αὐτὸν σχήματος· μείζων ἄρα ὁ Θ κῶνος τοῦ περι‐ γεγραμμένου σχήματος· ὅπερ ἀδύνατον [δέδεικται γὰρ τοῦτο ὅτι ὁ τηλικοῦτος κῶνος ἐλάσσων ἐστὶ τοῦ περιγε‐
30γραμμένου σχήματος περὶ τὸν τομέα]· ἴσος ἄρα ὁ τομεὺς
τῷ Θ κώνῳ.100

1

.

101

(2t)

Ἀρχιμήδης Δοσιθέῳ χαίρειν.
3 Πρότερον μὲν ἐπέστειλάς μοι γράψαι τῶν προβλημάτων τὰς ἀποδείξεις, ὧν αὐτὸς τὰς προτάσεις ἀπέστειλα
5Κόνωνι· συμβαίνει δὲ αὐτῶν τὰ πλεῖστα γράφεσθαι διὰ τῶν θεωρημάτων, ὧν πρότερον ἀπέστειλά σοι τὰς ἀποδεί‐ ξεις, ὅτι τε πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ, καὶ δὴ ὅτι παντὸς τμήματος σφαίρας τῇ ἐπιφανείᾳ ἴσος ἐστὶ κύκλος, οὗ ἡ
10ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ εὐθείᾳ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ τὴν περιφέρειαν τῆς βάσεως ἀγομένῃ, καὶ διότι πάσης σφαίρας ὁ κύλινδρος ὁ βάσιν μὲν ἔχων τὸν μέγιστον κύκλον τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας, αὐτός τε ἡμιόλιός ἐστι τῷ μεγέθει
15τῆς σφαίρας καὶ ἡ ἐπιφάνεια αὐτοῦ ἡμιολία τῆς ἐπιφανείας τῆς σφαίρας, καὶ διότι πᾶς τομεὺς στερεὸς ἴσος ἐστὶ κώνῳ τῷ βάσιν μὲν ἔχοντι τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ τμήματος τῆς σφαίρας τοῦ ἐν τῷ τομεῖ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας. Ὅσα μὲν οὖν τῶν θεωρη‐
20μάτων καὶ προβλημάτων γράφεται διὰ τούτων τῶν θεωρη‐ μάτων, ἐν τῷδε τῷ βιβλίῳ γράψας ἀπέσταλκά σοι, ὅσα δὲ δι’ ἄλλης εὑρίσκονται θεωρίας, τά τε περὶ ἑλίκων καὶ τὰ
περὶ τῶν κωνοειδῶν, πειράσομαι διὰ τάχους ἀποστεῖλαι.101

1

.

102

Τὸ δὲ πρῶτον ἦν τῶν προβλημάτων τόδε· Σφαίρας δοθείσης ἐπίπεδον χωρίον εὑρεῖν ἴσον τῇ ἐπιφανείᾳ τῆς σφαίρας. Ἔστιν δὲ τοῦτο φανερὸν δεδειγμένον ἐκ τῶν προειρημένων θεωρημάτων· τὸ γὰρ τετραπλάσιον τοῦ
5μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ ἐπίπεδόν τε χωρίον ἐστὶ καὶ ἴσον τῇ ἐπιφανείᾳ τῆς σφαίρας.
αʹ. Τὸ δεύτερον ἦν· Κώνου δοθέντος ἢ κυλίνδρου σφαῖραν εὑρεῖν τῷ κώνῳ ἢ τῷ κυλίνδρῳ ἴσην. [Omitted graphic marker]
10 Ἔστω διδόμενος κῶνος ἢ κύλινδρος ὁ Α καὶ τῷ Α ἴση ἡ Β σφαῖρα, καὶ κείσθω τοῦ Α κώνου ἢ κυλίνδρου ἡμιόλιος κύλινδρος ὁ ΓΖΔ, τῆς δὲ Β σφαίρας ἡμιόλιος κύλινδρος, οὗ βάσις ὁ περὶ διάμετρον τὴν ΗΘ κύκλος, ἄξων δὲ ὁ ΚΛ
ἴσος τῇ διαμέτρῳ τῆς Β σφαίρας· ἴσος ἄρα ἐστὶν ὁ Ε102

1

.

103

κύλινρδος τῷ Κ κυλίνδρῳ [τῶν δὲ ἴσων κυλίνδρων ἀντι‐ πεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν]· ὡς ἄρα ὁ Ε κύκλος πρὸς τὸν Κ κύκλον, τουτέστιν ὡς τὸ ἀπὸ τῆς ΓΔ πρὸς τὸ ἀπὸ τῆς ΗΘ, οὕτως ἡ ΚΛ πρὸς ΕΖ. Ἴση δὲ ἡ ΚΛ τῇ ΗΘ
5[ὁ γὰρ ἡμιόλιος κύλινδρος τῆς σφαίρας ἴσον ἔχει τὸν ἄξονα τῇ διαμέτρῳ τῆς σφαίρας, καὶ ὁ Κ κύκλος μέγιστός ἐστι τῶν ἐν τῇ σφαίρᾳ]· ὡς ἄρα τὸ ἀπὸ ΓΔ πρὸς τὸ ἀπὸ ΗΘ, οὕτως ἡ ΗΘ πρὸς τὴν ΕΖ. Ἔστω τῷ ἀπὸ ΗΘ ἴσον τὸ ὑπὸ ΓΔ, ΜΝ· ὡς ἄρα ἡ ΓΔ πρὸς ΜΝ, οὕτως τὸ ἀπὸ
10ΓΔ πρὸς τὸ ἀπὸ ΗΘ, τουτέστιν ἡ ΗΘ πρὸς ΕΖ, καὶ ἐναλλάξ, ὡς ἡ ΓΔ πρὸς τὴν ΗΘ, οὕτως ἡ ΗΘ πρὸς τὴν ΜΝ καὶ ἡ ΜΝ πρὸς τὴν ΕΖ. Καί ἐστιν δοθεῖσα ἑκατέρα τῶν ΓΔ, ΕΖ· δύο ἄρα δοθεισῶν εὐθειῶν τῶν ΓΔ, ΕΖ δύο μέσαι ἀνάλογόν εἰσιν αἱ ΗΘ, ΜΝ· δοθεῖσα ἄρα ἑκατέρα τῶν ΗΘ, ΜΝ.
15 Συντεθήσεται δὴ τὸ πρόβλημα οὕτως· ἔστω δὴ ὁ δοθεὶς κῶνος ἢ κύλινδρος ὁ Α· δεῖ δὴ τῷ Α κώνῳ ἢ κυλίνδρῳ ἴσην σφαῖραν εὑρεῖν. Ἔστω τοῦ Α κώνου ἢ κυλίνδρου ἡμιόλιος κύλινδρος, οὗ βάσις ὁ περὶ διάμετρον τὴν ΓΔ κύκλος, ἄξων δὲ ὁ ΕΖ,
20καὶ εἰλήφθω τῶν ΓΔ, ΕΖ δύο μέσαι ἀνάλογον αἱ ΗΘ, ΜΝ, ὥστε εἶναι ὡς τὴν ΓΔ πρὸς τὴν ΗΘ, τὴν ΗΘ πρὸς τὴν ΜΝ καὶ τὴν ΜΝ πρὸς τὴν ΕΖ, καὶ νοείσθω κύλινδρος, οὗ βάσις ὁ περὶ διάμετρον τὴν ΗΘ κύκλος, ἄξων δὲ ὁ ΚΛ ἴσος τῇ ΗΘ διαμέτρῳ· λέγω δὴ ὅτι ἴσος ἐστὶν ὁ Ε
25κύλινδρος τῷ Κ κυλίνδρῳ. Καὶ ἐπεί ἐστιν, ὡς ἡ ΓΔ πρὸς ΗΘ, ἡ ΜΝ πρὸς ΕΖ, καὶ ἐναλλάξ, καὶ ἴση ἡ ΗΘ τῇ ΚΛ [ὡς ἄρα ἡ ΓΔ πρὸς ΜΝ, τουτέστιν ὡς τὸ ἀπὸ τῆς ΓΔ πρὸς τὸ ἀπὸ ΗΘ, οὕτως ὁ Ε κύκλος πρὸς τὸν Κ κύκλον], ὡς ἄρα ὁ Ε κύκλος πρὸς τὸν
30Κ κύκλον, οὕτως ἡ ΚΔ πρὸς τὴν ΕΖ [τῶν ἄρα Ε, Κ κυλίν‐103

1

.

104

δρων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν]· ἴσος ἄρα ὁ Ε κύλινδρος τῷ Κ κυλίνδρῳ. Ὁ δὲ Κ κύλινδρος τῆς σφαίρας, ἧς διάμετρος ἡ ΗΘ, ἡμιόλιός ἐστιν· καὶ ἡ σφαῖρα ἄρα, ἧς ἡ διάμετρος ἴση ἐστὶ τῇ ΗΘ, τουτέστιν ἡ Β, ἴση ἐστὶ
5τῷ Α κώνῳ ἢ κυλίνδρῳ.
βʹ. Παντὶ τμήματι τῆς σφαίρας ἴσος ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων τὴν αὐτὴν τῷ τμήματι, ὕψος δὲ εὐθεῖαν, ἥτις πρὸς τὸ ὕψος τοῦ τμήματος τὸν αὐτὸν λόγον ἔχει, ὃν
10συναμφότερος ἥ τε ἐκ τοῦ κέντρου τῆς σφαίρας καὶ τὸ ὕψος τοῦ λοιποῦ τμήματος πρὸς τὸ ὕψος τοῦ λοιποῦ τμήματος. Ἔστω σφαῖρα, ἐν ᾗ μέγιστος κύκλος, οὗ διάμετρος ἡ ΑΓ, καὶ τετμήσθω ἐπιπέδῳ ἡ σφαῖρα τῷ διὰ τῆς ΒΖ πρὸς
15ὀρθὰς τῇ ΑΓ, καὶ ἔστω κέντρον τὸ Θ, καὶ πεποιήσθω, ὡς συναμφότερος ἡ ΘΑ, ΑΕ πρὸς τὴν ΑΕ, οὕτως ἡ ΔΕ πρὸς ΓΕ, καὶ πάλιν πεποιήσθω, ὡς συναμφότερος ἡ ΘΓ, ΓΕ πρὸς ΓΕ, οὕτως ἡ ΚΕ πρὸς ΕΑ, καὶ ἀναγεγράφθωσαν κῶνοι ἀπὸ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν ΒΖ κορυφὰς
20ἔχοντες τὰ Κ, Δ σημεῖα· λέγω ὅτι ἴσος ἐστὶν ὁ μὲν ΒΔΖ κῶνος τῷ κατὰ τὸ Γ τμήματι τῆς σφαίρας, ὁ δὲ ΒΚΖ τῷ
κατὰ τὸ Α σημεῖον. [Omitted graphic marker]104

1

.

105

Ἐπεζεύχθωσαν γὰρ αἱ ΒΘ, ΘΖ, καὶ νοείσθω κῶνος βάσιν μὲν ἔχων τὸν περὶ διάμετρον τὴν ΒΖ κύκλον, κορυφὴν δὲ τὸ Θ σημεῖον, καὶ ἔστω κῶνος ὁ Μ βάσιν ἔχων κύκλον ἴσον τῇ ἐπιφανείᾳ τοῦ ΒΓΖ τμήματος τῆς σφαίρας, του‐
5τέστιν οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΒΓ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας· ἔσται δὴ ὁ Μ κῶνος ἴσος τῷ ΒΓΘΖ στερεῷ τομεῖ· τοῦτο γὰρ δέδεικται ἐν τῷ πρώτῳ βιβλίῳ. Ἐπεὶ δέ ἐστιν, ὡς ἡ ΔΕ πρὸς ΕΓ, οὕτως συναμ‐ φότερος ἡ ΘΑ, ΑΕ πρὸς ΑΕ, διελόντι ἔσται, ὡς ἡ ΓΔ
10πρὸς ΓΕ, οὕτως ἡ ΘΑ πρὸς ΑΕ, τουτέστιν ἡ ΓΘ πρὸς ΑΕ, καὶ ἐναλλάξ, ὡς ἡ ΔΓ πρὸς ΓΘ ἐστίν, οὕτως ἡ ΓΕ πρὸς ΕΑ, καὶ συνθέντι, ὡς ἡ ΘΔ πρὸς ΘΓ, ἡ ΓΑ πρὸς ΑΕ, τουτέστι τὸ ἀπὸ ΓΒ πρὸς τὸ ἀπὸ ΒΕ· ὡς ἄρα ἡ ΔΘ πρὸς [Omitted graphic marker] ΓΘ, τὸ ἀπὸ ΓΒ πρὸς τὸ ἀπὸ ΒΕ. Ἴση δέ ἐστιν ἡ ΓΒ τῇ
15ἐκ τοῦ κέντρου τοῦ Μ κύκλου, ἡ δὲ ΒΕ ἐκ τοῦ κέντρου ἐστὶ τοῦ περὶ διάμετρον τὴν ΒΖ κύκλου· ὡς ἄρα ἡ ΔΘ πρὸς ΘΓ, ὁ Μ κύκλος πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον. Καί ἐστιν ἴση ἡ ΘΓ τῷ ἄξονι του Μ κώνου· καὶ ὡς ἄρα ἡ ΔΘ πρὸς τὸν ἄξονα τοῦ Μ κώνου, οὕτως ὁ Μ
25κύκλος πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον· ἴσος ἄρα
ὁ κῶνος ὁ βάσιν μὲν ἔχων τὸν Μ κύκλον, ὕψος δὲ τὴν ἐκ105

1

.

106

τοῦ κέντρου τῆς σφαίρας, τῷ ΒΔΖΘ στερεῷ ῥόμβῳ [τοῦτο γὰρ ἐν τοῖς λήμμασι τοῦ πρώτου βιβλίου δέδεικται. Ἢ οὕτως· Ἐπεί ἐστιν, ὡς ἡ ΔΘ πρὸς τὸ ὕψος τοῦ Μ κώνου, οὕτως ὁ Μ κύκλος πρὸς τὸν περὶ διάμετρον τὴν
5ΒΖ κύκλον, ἴσος ἄρα ἐστὶν ὁ Μ κῶνος τῷ κώνῳ, οὗ βάσις μὲν ὁ περὶ διάμετρον τὴν ΒΖ κύκλος, ὕψος δὲ ἡ ΔΘ· ἀντιπεπόνθασι γὰρ αὐτῶν αἱ βάσεις τοῖς ὕψεσιν. Ἀλλ’ ὁ κῶνος ὁ βάσιν μὲν ἔχων τὸν περὶ διάμετρον τὴν ΒΖ κύκλον, ὕψος δὲ τὴν ΔΘ, ἴσος ἐστὶ τῷ ΒΔΖΘ στερεῷ ῥόμβῳ].
10Ἀλλ’ ὁ Μ κῶνος ἴσος ἐστὶ τῷ ΒΓΖΘ στερεῷ τομεῖ· καὶ ὁ ΒΓΖΘ στερεὸς τομεὺς ἄρα ἴσος ἐστὶ τῷ ΒΔΖΘ στερεῷ ῥόμβῳ. Κοινοῦ ἀφαιρεθέντος τοῦ κώνου, οὗ βάσις μέν ἐστιν ὁ περὶ διάμετρον τὴν ΒΖ κύκλος, ὕψος δὲ ἡ ΕΘ, λοιπὸς ἄρα ὁ ΒΔΖ κῶνος ἴσος ἐστὶ τῷ ΒΖΓ τμήματι τῆς
15σφαίρας. Ὁμοίως δὲ δειχθήσεται καὶ ὁ ΒΚΖ κῶνος ἴσος τῷ ΒΑΖ τμήματι τῆς σφαίρας. Ἐπεὶ γάρ ἐστιν, ὡς συναμ‐ φότερος ἡ ΘΓΕ πρὸς ΓΕ, οὕτως ἡ ΚΕ πρὸς ΕΑ, διελόντι ἄρα, ὡς ἡ ΚΑ πρὸς ΑΕ, οὕτως ἡ ΘΓ πρὸς ΓΕ. Ἴση δὲ ἡ ΘΓ τῇ ΘΑ· καὶ ἐναλλὰξ ἄρα ἐστίν, ὡς ἡ ΚΑ πρὸς ΑΘ,
20οὕτως ἡ ΑΕ πρὸς ΕΓ· ὥστε καὶ συνθέντι, ὡς ἡ ΚΘ πρὸς ΘΑ, ἡ ΑΓ πρὸς ΓΕ, τουτέστι τὸ ἀπὸ ΒΑ πρὸς τὸ ἀπὸ ΒΕ. Κείσθω δὴ πάλιν κύκλος ὁ Ν ἴσην ἔχων τὴν ἐκ τοῦ κέντρου τῇ ΑΒ· ἴσος ἄρα ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΒΑΖ τμήματος. Καὶ νοείσθω [ὁ] κῶνος ὁ Ν ἴσον ἔχων τὸ ὕψος τῇ ἐκ τοῦ
25κέντρου τῆς σφαίρας· ἴσος ἄρα ἐστὶ τῷ ΒΘΖΑ στερεῷ τομεῖ· τοῦτο γὰρ ἐν τῷ πρώτῳ δέδεικται. Καὶ ἐπεὶ ἐδείχθη, ὡς ἡ ΚΘ πρὸς ΘΑ, οὕτως τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΒΕ,
τουτέστι τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ν κύκλου πρὸς106

1

.

107

τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ περὶ διάμετρον τὴν ΒΖ κύκλου, τουτέστιν ὁ Ν κύκλος πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον, ἴση δὲ ἡ ΑΘ τῷ ὕψει τοῦ Ν κώνου, ὡς ἄρα ἡ ΚΘ πρὸς τὸ ὕψος τοῦ Ν κώνου, οὕτως ὁ Ν κύκλος
5πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον· ἴσος ἄρα ἐστὶν ὁ Ν κῶνος, τουτέστιν ὁ ΒΘΖΑ τομεύς, τῷ ΒΘΖΚ σχήματι. Κοινὸς προσκείσθω ὁ κῶνος, οὗ βάσις μὲν ὁ περὶ τὴν ΒΖ κύκλος, ὕψος δὲ ἡ ΕΘ· ὅλον ἄρα τὸ ΑΒΖ τμῆμα τῆς σφαίρας ἴσον ἐστὶν τῷ ΒΖΚ κώνῳ· ὅπερ ἔδει δεῖξαι.
10tΠΟΡΙΣΜΑ.
11 Καὶ φανερὸν ὅτι γίγνεται καθόλου τμῆμα σφαίρας πρὸς κῶνον τὸν βάσιν μὲν ἔχοντα τὴν αὐτὴν τῷ τμήματι καὶ ὕψος ἴσον, ὡς συναμφότερος ἥ τε ἐκ τοῦ κέντρου τῆς σφαίρας καὶ ἡ κάθετος τοῦ λοιποῦ τμήματος πρὸς τὴν
15κάθετον τοῦ λοιποῦ τμήματος· ὡς γὰρ ἡ ΔΕ πρὸς ΕΓ, οὕτως ὁ ΔΖΒ κῶνος, τουτέστι τὸ ΒΓΖ τμῆμα, πρὸς τὸν
ΒΓΖ κῶνον. [Omitted graphic marker]107

1

.

108

Τῶν αὐτῶν ὑποκειμένων, ὅτι καὶ ὁ ΚΒΖ κῶνος ἴσος ἐστὶ τῷ ΒΑΖ τμήματι τῆς σφαίρας. Ἔστω γὰρ ὁ Ν κῶνος βάσιν μὲν ἔχων [τὴν] ἴσην τῇ ἐπιφανείᾳ τῆς σφαίρας, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας· ἴσος ἄρα ἐστὶν
5ὁ κῶνος τῇ σφαίρᾳ [ἡ γὰρ σφαῖρα δέδεικται τετραπλασία τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον κύκλον καὶ ὕψος τὴν ἐκ τοῦ κέντρου. Ἀλλὰ μὴν καὶ ὁ Ν κῶνος τοῦ αὐτοῦ ἐστι τετραπλάσιος, ἐπεὶ καὶ ἡ βάσις τῆς βάσεως καὶ ἡ ἐπιφάνεια τῆς σφαίρας τοῦ μεγίστου κύκλου τῶν
10ἐν αὐτῇ]. Καὶ ἐπεί ἐστιν, ὡς συναμφότερος ἡ ΘΑ, ΑΕ πρὸς ΑΕ, ἡ ΔΕ πρὸς ΕΓ, διελόντι καὶ ἐναλλάξ, ὡς ἡ ΘΓ πρὸς ΓΔ, ἡ ΑΕ πρὸς ΕΓ. Πάλιν, ἐπεί ἐστιν, ὡς ἡ ΚΕ πρὸς ΕΑ, συναμφότερος ἡ ΘΓΕ πρὸς ΓΕ, διελόντι καὶ ἐναλλάξ, ὡς ἡ ΚΑ πρὸς ΓΘ, τουτέστι πρὸς ΘΑ, οὕτως ἡ
15ΑΕ πρὸς ΕΓ, τουτέστιν ἡ ΘΓ πρὸς ΓΔ. Καὶ συνθέντι· ἴση δὲ ἡ ΑΘ τῇ ΘΓ· ὡς ἄρα ἡ ΚΘ πρὸς ΘΓ, ἡ ΘΔ πρὸς ΔΓ, καὶ ὅλη ἡ ΚΔ πρὸς ΔΘ ἐστίν, ὡς ἡ ΔΘ πρὸς ΔΓ, τουτέστιν ὡς ἡ ΚΘ πρὸς ΘΑ· ἴσον ἄρα τὸ ὑπὸ ΔΚ, ΘΑ τῷ ὑπὸ τῶν ΔΘΚ. Πάλιν, ἐπεί ἐστιν, ὡς ἡ ΚΘ πρὸς ΘΓ, ἡ ΘΔ
20πρὸς ΓΔ, ἐναλλάξ· ὡς δὲ ἡ ΘΓ πρὸς ΓΔ, ἐδείχθη ἡ ΑΕ πρὸς ΕΓ· ὡς ἄρα ἡ ΚΘ πρὸς ΘΔ, ἡ ΑΕ πρὸς ΕΓ· καὶ ὡς ἄρα τὸ ἀπὸ ΚΔ πρὸς τὸ ὑπὸ ΚΘΔ, τὸ ἀπὸ ΑΓ πρὸς τὸ ὑπὸ τῶν ΑΕΓ. Τὸ δὲ ὑπὸ τῶν ΚΘΔ ἴσον ἐδείχθη τῷ ὑπὸ ΚΔ, ΑΘ· ὡς ἄρα τὸ ἀπὸ ΚΔ πρὸς τὸ ὑπὸ τῶν ΚΔ,
25ΑΘ, τουτέστιν ἡ ΚΔ πρὸς ΑΘ, τὸ ἀπὸ ΑΓ πρὸς τὸ ὑπὸ ΑΕΓ, τουτέστι πρὸς τὸ ἀπὸ ΕΒ. Καί ἐστιν ἴση ἡ ΑΓ τῇ ἐκ τοῦ κέντρου τοῦ Ν κύκλου· ὡς ἄρα τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ν κύκλου πρὸς τὸ ἀπὸ ΒΕ, τουτέστιν ὁ Ν
κύκλος πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον, οὕτως ἡ108

1

.

109

ΚΔ πρὸς ΑΘ, τουτέστιν ἡ ΚΔ πρὸς τὸ ὕψος τοῦ Ν κώνου· ἴσος ἄρα ἐστὶν ὁ Ν κῶνος, τουτέστιν ἡ σφαῖρα, τῷ ΒΔΖΚ στερεῷ ῥόμβῳ [ἢ οὕτως· ἔστιν ἄρα, ὡς ὁ Ν κύκλος πρὸς τὸν περὶ διάμετρον τὴν ΒΖ κύκλον, οὕτως ἡ ΔΚ πρὸς τὸ
5ὕψος τοῦ Ν κώνου· ἴσος ἄρα ἐστὶν ὁ Ν κῶνος τῷ κώνῳ, οὗ βάσις μέν ἐστιν ὁ περὶ διάμετρον τὴν ΒΖ κύκλος, ὕψος δὲ ἡ ΔΚ· ἀντιπεπόνθασιν γὰρ αὐτῶν αἱ βάσεις τοῖς ὕψεσιν. Ἀλλ’ οὗτος ὁ κῶνος ἴσος ἐστὶ τῷ ΒΔΖΚ στερεῷ ῥόμβῳ· καὶ ὁ Ν ἄρα κῶνος, τουτέστιν ἡ σφαῖρα, ἴση ἐστὶ τῷ
10ΒΖΚΔ στερεῷ ῥόμβῳ]. Ὧν ὁ ΒΔΖ κῶνος ἴσος ἐδείχθη τῷ ΒΓΖ τμήματι τῆς σφαίρας· λοιπὸς ἄρα ὁ ΒΚΖ κῶνος ἴσος ἐστὶ τῷ ΒΑΖ τμήματι τῆς σφαίρας.
γʹ. Τρίτον ἦν πρόβλημα τόδε· Τὴν δοθεῖσαν σφαῖραν
15ἐπιπέδῳ τεμεῖν, ὅπως αἱ τῶν τμημάτων ἐπιφάνειαι πρὸς ἀλλήλας λόγον ἔχωσιν τὸν αὐτὸν τῷ δοθέντι. Γεγονέτω, καὶ ἔστω τῆς σφαίρας μέγιστος κύκλος ὁ ΑΔΒΕ, διάμετρος δὲ αὐτοῦ ἡ ΑΒ, καὶ ἐκβεβλήσθω πρὸς τὴν ΑΒ ἐπίπεδον ὀρθόν, καὶ ποιείτω τὸ ἐπίπεδον ἐν τῷ
20ΑΔΒΕ κύκλῳ τομὴν τὴν ΔΕ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΒΔ. Ἐπεὶ οὖν λόγος ἐστὶ τῆς ἐπιφανείας τοῦ ΔΑΕ τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ ΔΒΕ τμήματος, ἀλλὰ τῇ ἐπιφανείᾳ τοῦ ΔΑΕ τμήματος ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΑΔ, τῇ δὲ ἐπιφανείᾳ τοῦ ΔΒΕ τμήματος ἴσος
25ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΔΒ, ὡς δὲ οἱ εἰρημένοι κύκλοι πρὸς ἀλλήλους, οὕτως τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΔΒ, τουτέστιν ἡ ΑΓ πρὸς ΓΒ, λόγος ἄρα
τῆς ΑΓ πρὸς ΓΒ δοθείς· ὥστε δοθέν ἐστι τὸ Γ σημεῖον.109

1

.

110

Καί ἐστι τῇ ΑΒ πρὸς ὀρθὰς ἡ ΔΕ· θέσει ἄρα καὶ τὸ διὰ τῆς ΔΕ ἐπίπεδον. [Omitted graphic marker] Συντεθήσεται δὴ οὕτως· ἔστω σφαῖρα, ἧς μέγιστος κύκλος ὁ ΑΒΔΕ καὶ διάμετρος ἡ ΑΒ, ὁ δὲ δοθεὶς λόγος
5ὁ τῆς Ζ πρὸς Η, καὶ τετμήσθω ἡ ΑΒ κατὰ τὸ Γ, ὥστε εἶναι, ὡς τὴν ΑΓ πρὸς ΒΓ, οὕτως τὴν Ζ πρὸς Η, καὶ διὰ τοῦ Γ ἐπιπέδῳ τετμήσθω ἡ σφαῖρα πρὸς ὀρθὰς τῇ ΑΒ εὐθείᾳ, καὶ ἔστω κοινὴ τομὴ ἡ ΔΕ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΔΒ, καὶ ἐκκείσθωσαν δύο κύκλοι οἱ Θ, Κ, ὁ μὲν Θ
10ἴσην ἔχων τὴν ἐκ τοῦ κέντρου τῇ ΑΔ, ὁ δὲ Κ τὴν ἐκ τοῦ κέντρου ἴσην ἔχων τῇ ΔΒ· ἔστιν ἄρα ὁ μὲν Θ κύκλος ἴσος τῇ ἐπιφανείᾳ τοῦ ΔΑΕ τμήματος, ὁ δὲ Κ τοῦ ΔΒΕ τμήματος· τοῦτο γὰρ προδέδεικται ἐν τῷ πρώτῳ βιβλίῳ. Καὶ ἐπεὶ ὀρθή ἐστιν ἡ ὑπὸ ΑΔΒ καὶ κάθετος ἡ ΓΔ, ἔστιν,
15ὡς ἡ ΑΓ πρὸς ΓΒ, τουτέστιν ἡ Ζ πρὸς Η, τὸ ἀπὸ ΑΔ πρὸς τὸ ἀπὸ ΔΒ, τουτέστι τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Θ κύκλου πρὸς τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Κ κύκλου, τουτέστιν ὁ Θ κύκλος πρὸς τὸν Κ κύκλον, τουτέστιν ἡ ἐπιφάνεια τοῦ ΔΑΕ τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ
20ΔΒΕ τμήματος τῆς σφαίρας.110

1

.

111

δʹ. Τὴν δοθεῖσαν σφαῖραν τεμεῖν, ὥστε τὰ τμήματα τῆς σφαίρας πρὸς ἄλληλα λόγον ἔχειν τὸν αὐτὸν τῷ δοθέντι. Ἔστω ἡ δοθεῖσα σφαῖρα ἡ ΑΒΓΔ· δεῖ δὴ αὐτὴν τεμεῖν
5ἐπιπέδῳ, ὥστε τὰ τμήματα τῆς σφαίρας πρὸς ἄλληλα λόγον ἔχειν τὸν δοθέντα. [Omitted graphic marker] Τετμήσθω διὰ τῆς ΑΓ ἐπιπέδῳ· λόγος ἄρα τοῦ ΑΔΓ τμήματος τῆς σφαίρας πρὸς τὸ ΑΒΓ τμῆμα τῆς σφαίρας δοθείς. Τετμήσθω δὲ ἡ σφαῖρα διὰ τοῦ κέντρου, καὶ ἔστω
10ἡ τομὴ μέγιστος κύκλος ὁ ΑΒΓΔ, κέντρον δὲ τὸ Κ καὶ διάμετρος ἡ ΔΒ, καὶ πεποιήσθω, ὡς μὲν συναμφότερος ἡ ΚΔΧ πρὸς ΔΧ, οὕτως ἡ ΡΧ πρὸς ΧΒ, ὡς δὲ συναμφότερος ἡ ΚΒΧ πρὸς ΒΧ, οὕτως ἡ ΛΧ πρὸς ΧΔ, καὶ ἐπεζεύχθωσαν αἱ ΑΛ, ΛΓ, ΑΡ, ΡΓ· ἴσος ἄρα ἐστὶν ὁ ΑΛΓ κῶνος τῷ ΑΔΓ
15τμήματι τῆς σφαίρας, ὁ δὲ ΑΡΓ τῷ ΑΒΓ· λόγος ἄρα καὶ τοῦ ΑΛΓ κώνου πρὸς τὸν ΑΡΓ κῶνον δοθείς. Ὡς δὲ ὁ κῶνος πρὸς τὸν κῶνον, οὕτως ἡ ΛΧ πρὸς ΧΡ [ἐπείπερ τὴν αὐτὴν βάσιν ἔχουσιν τὸν περὶ διάμετρον τὴν ΑΓ κύκλον]· λόγος ἄρα καὶ τῆς ΛΧ πρὸς ΧΡ δοθείς.
20Καὶ διὰ ταὐτὰ τοῖς πρότερον διὰ τῆς κατασκευῆς, ὡς ἡ
ΛΔ πρὸς ΚΔ, ἡ ΚΒ πρὸς ΒΡ καὶ ἡ ΔΧ πρὸς ΧΒ. Καὶ ἐπεί111

1

.

112

ἐστιν, ὡς ἡ ΡΒ πρὸς ΒΚ, ἡ ΚΔ πρὸς ΛΔ, συνθέντι, ὡς ἡ ΡΚ πρὸς ΚΒ, τουτέστι πρὸς ΚΔ, οὕτως ἡ ΚΛ πρὸς ΛΔ· καὶ ὅλη ἄρα ἡ ΡΛ πρὸς ὅλην τὴν ΚΛ ἐστίν, ὡς ἡ ΚΛ πρὸς ΛΔ. Ἴσον ἄρα τὸ ὑπὸ τῶν ΡΛΔ τῷ ἀπὸ ΛΚ. Ὡς ἄρα
5ἡ ΡΛ πρὸς ΛΔ, τὸ ἀπὸ ΚΛ πρὸς τὸ ἀπὸ ΛΔ. Καὶ ἐπεί ἐστιν, ὡς ἡ ΛΔ πρὸς ΔΚ, οὕτως ἡ ΔΧ πρὸς ΧΒ, ἔσται ἀνάπαλιν καὶ συνθέντι, ὡς ἡ ΚΛ πρὸς ΛΔ, οὕτως ἡ ΒΔ πρὸς ΔΧ [καὶ ὡς ἄρα τὸ ἀπὸ ΚΛ πρὸς τὸ ἀπὸ ΛΔ, οὕτως τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ. Πάλιν, ἐπεί ἐστιν, ὡς ἡ ΛΧ
10πρὸς ΔΧ, συναμφότερος ἡ ΚΒ, ΒΧ πρὸς ΒΧ, διελόντι, ὡς ἡ ΛΔ πρὸς ΔΧ, οὕτως ἡ ΚΒ πρὸς ΒΧ]. Καὶ κείσθω τῇ ΚΒ ἴση ἡ ΒΖ· ὅτι γὰρ ἐκτὸς τοῦ Ρ πεσεῖται δῆλον [καὶ ἔσται, ὡς ἡ ΛΔ πρὸς ΔΧ, οὕτως ἡ ΖΒ πρὸς ΒΧ· ὥστε καί, ὡς ἡ ΔΛ πρὸς ΛΧ, ἡ ΒΖ πρὸς ΖΧ]. Ἐπεὶ δὲ λόγος ἐστὶ
15τῆς ΔΛ πρὸς ΛΧ δοθείς, καὶ τῆς ΡΛ ἄρα πρὸς ΛΧ λόγος ἐστὶ δοθείς. Ἐπεὶ οὖν ὁ τῆς ΡΛ πρὸς ΛΧ λόγος συνῆπται ἔκ τε τοῦ ὃν ἔχει ἡ ΡΛ πρὸς ΛΔ, καὶ ἡ ΔΛ πρὸς ΛΧ, ἀλλ’ ὡς μὲν ἡ ΡΛ πρὸς ΛΔ, τὸ ἀπὸ ΔΒ πρὸς τὸ ἀπὸ ΔΧ, ὡς δὲ ἡ ΔΛ πρὸς ΛΧ, οὕτως ἡ ΒΖ πρὸς ΖΧ, ὁ ἄρα
20τῆς ΡΛ πρὸς ΛΧ λόγος συνῆπται ἔκ τε τοῦ ὃν ἔχει τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ, καὶ ἡ ΒΖ πρὸς ΖΧ. Πεποιήσθω δέ, ὡς ἡ ΡΛ πρὸς ΛΧ, ἡ ΒΖ πρὸς ΖΘ· λόγος δὲ τῆς ΡΛ πρὸς ΛΧ δοθείς· λόγος ἄρα καὶ τῆς ΖΒ πρὸς ΖΘ δοθείς. Δοθεῖσα δὲ ἡ ΒΖ· ἴση γάρ ἐστι τῇ ἐκ τοῦ κέντρου· δοθεῖσα ἄρα
25καὶ ἡ ΖΘ. Καὶ ὁ τῆς ΒΖ ἄρα λόγος πρὸς ΖΘ συνῆπται ἔκ τε τοῦ ὃν ἔχει τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ, καὶ ἡ ΒΖ πρὸς ΖΧ. Ἀλλ’ ὁ ΒΖ πρὸς ΖΘ λόγος συνῆπται ἔκ τε τοῦ τῆς ΒΖ πρὸς ΖΧ καὶ τοῦ τῆς ΖΧ πρὸς ΖΘ [κοινὸς ἀφῃρήσθω
ὁ τῆς ΒΖ πρὸς ΖΧ]· λοιπὸν ἄρα ἐστίν, ὡς τὸ ἀπὸ ΒΔ,112

1

.

113

τουτέστι δοθέν, πρὸς τὸ ἀπὸ ΔΧ, οὕτως ἡ ΧΖ πρὸς ΖΘ, τουτέστι πρὸς δοθέν. Καί ἐστιν δοθεῖσα ἡ ΖΔ εὐθεῖα· εὐθεῖαν ἄρα δοθεῖσαν τὴν ΔΖ τεμεῖν δεῖ κατὰ τὸ Χ καὶ ποιεῖν, ὡς τὴν ΧΖ πρὸς δοθεῖσαν [τὴν ΖΘ], οὕτως τὸ
5δοθὲν [τὸ ἀπὸ ΒΔ] πρὸς τὸ ἀπὸ ΔΧ. Τοῦτο οὕτως ἁπλῶς μὲν λεγόμενον ἔχει διορισμόν, προστιθεμένων δὲ τῶν προβλημάτων τῶν ἐνθάδε ὑπαρχόντων [τουτέστι τοῦ τε διπλασίαν εἶναι τὴν ΔΒ τῆς ΒΖ καὶ τοῦ μείζονα τῆς ΖΘ τὴν ΖΒ, ὡς κατὰ τὴν ἀνάλυσιν] οὐκ ἔχει διορισμόν· καὶ
10ἔσται τὸ πρόβλημα τοιοῦτον· δύο δοθεισῶν εὐθειῶν τῶν ΒΔ, ΒΖ καὶ διπλασίας οὔσης τῆς ΒΔ τῆς ΒΖ καὶ σημείου ἐπὶ τῆς ΒΖ τοῦ Θ τεμεῖν τὴν ΔΒ κατὰ τὸ Χ καὶ ποιεῖν, ὡς τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ, τὴν ΧΖ πρὸς ΖΘ· ἑκάτερα δὲ ταῦτα ἐπὶ τέλει ἀναλυθήσεταί τε καὶ συντεθήσεται.
15 Συντεθήσεται δὴ τὸ πρόβλημα οὕτως· ἔστω ὁ δοθεὶς λόγος ὁ τῆς Π πρὸς Σ μείζονος πρὸς ἐλάσσονα, καὶ δεδόσθω τις σφαῖρα καὶ τετμήσθω ἐπιπέδῳ διὰ τοῦ κέντρου, καὶ ἔστω τομὴ ὁ ΑΒΓΔ κύκλος, καὶ διάμετρος ἔστω ἡ ΒΔ, κέντρον δὲ τὸ Κ, καὶ τῇ ΚΒ ἴση κείσθω ἡ ΒΖ,
20καὶ τετμήσθω ἡ ΒΖ κατὰ τὸ Θ, ὥστε εἶναι, ὡς τὴν ΘΖ πρὸς ΘΒ, τὴν Π πρὸς Σ, καὶ ἔτι τετμήσθω ἡ ΒΔ κατὰ τὸ Χ, ὥστε εἶναι, ὡς τὴν ΧΖ πρὸς ΘΖ, τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ, καὶ διὰ τοῦ Χ ἐπίπεδον ἐκβεβλήσθω ὀρθὸν πρὸς τὴν ΒΔ· λέγω ὅτι τὸ ἐπίπεδον τοῦτο τεμεῖ τὴν σφαῖραν, ὥστε
25εἶναι, ὡς τὸ μεῖζον τμῆμα πρὸς τὸ ἔλασσον, τὴν Π πρὸς Σ. Πεποιήσθω γάρ, ὡς μὲν συναμφότερος ἡ ΚΒΧ πρὸς ΒΧ, οὕτως ἡ ΛΧ πρὸς ΔΧ, ὡς δὲ συναμφότερος ἡ ΚΔΧ πρὸς
ΧΔ, ἡ ΡΧ πρὸς ΧΒ, καὶ ἐπεζεύχθωσαν αἱ ΑΛ, ΛΓ, ΑΡ, ΡΓ·113

1

.

114

[Omitted graphic marker] ἔσται δὴ διὰ τὴν κατασκευήν, ὡς ἐδείξαμεν ἐν τῇ ἀναλύσει, ἴσον τὸ ὑπὸ ΡΛΔ τῷ ἀπὸ ΛΚ, καὶ ὡς ἡ ΚΛ πρὸς ΛΔ, ἡ ΒΔ πρὸς ΔΧ· ὥστε καί, ὡς τὸ ἀπὸ ΚΛ πρὸς τὸ ἀπὸ ΛΔ, τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ. Καὶ ἐπεὶ τὸ ὑπὸ τῶν ΡΛΔ
5τῷ ἀπὸ ΛΚ ἐστὶν ἴσον [ἔστιν, ὡς ἡ ΡΛ πρὸς ΛΔ, τὸ ἀπὸ ΛΚ πρὸς τὸ ἀπὸ ΛΔ], ἔσται ἄρα καί, ὡς ἡ ΡΛ πρὸς ΛΔ, τὸ ἀπὸ ΒΔ πρὸς τὸ ἀπὸ ΔΧ, τουτέστιν ἡ ΧΖ πρὸς ΖΘ. Καὶ ἐπεί ἐστιν, ὡς συναμφότερος ἡ ΚΒΧ πρὸς ΒΧ, οὕτως ἡ ΛΧ πρὸς ΧΔ, ἴση δέ ἐστιν ἡ ΚΒ τῇ ΒΖ, ἔσται ἄρα καί,
10ὡς ἡ ΖΧ πρὸς ΧΒ, οὕτως ἡ ΛΧ πρὸς ΧΔ. Ἀναστρέψαντι, ὡς ἡ ΧΖ πρὸς ΖΒ, οὕτως ἡ ΧΛ πρὸς ΛΔ· ὥστε καί, ὡς ἡ ΛΔ πρὸς ΛΧ, οὕτως ἡ ΒΖ πρὸς ΖΧ. Καὶ ἐπεί ἐστιν, ὡς ἡ ΡΛ πρὸς ΛΔ, οὕτως ἡ ΧΖ πρὸς ΖΘ, ὡς δὲ ἡ ΔΛ πρὸς ΛΧ, οὕτως ἡ ΒΖ πρὸς ΖΧ, καὶ δι’ ἴσου ἐν τῇ τεταραγμένῃ
15ἀναλογίᾳ, ὡς ἡ ΡΛ πρὸς ΛΧ, οὕτως ἡ ΒΖ πρὸς ΖΘ· καὶ ὡς ἄρα ἡ ΛΧ πρὸς ΧΡ, οὕτως ἡ ΖΘ πρὸς ΘΒ. Ὡς δὲ ἡ ΖΘ πρὸς ΘΒ, οὕτως ἡ Π πρὸς Σ· καὶ ὡς ἄρα ἡ ΛΧ πρὸς ΧΡ, τουτέστιν ὁ ΑΓΛ κῶνος πρὸς τὸν ΑΡΓ κῶνον, τουτέστι τὸ ΑΔΓ τμῆμα τῆς σφαίρας πρὸς τὸ ΑΒΓ τμῆμα τῆς
20σφαίρας, οὕτως ἡ Π πρὸς Σ.114

1

.

115

εʹ. Τῷ δοθέντι τμήματι σφαίρας ὅμοιον καὶ ἄλλῳ τῷ δοθέντι ἴσον αὐτὸ συστήσασθαι. Ἔστω τὰ δύο δοθέντα τμήματα σφαίρας τὰ ΑΒΓ, ΕΖΗ,
5καὶ ἔστω τοῦ μὲν ΑΒΓ τμήματος βάσις ὁ περὶ διάμετρον τὴν ΑΒ κύκλος, κορυφὴ δὲ τὸ Γ σημεῖον, τοῦ δὲ ΕΖΗ βάσις ὁ περὶ διάμετρον τὴν ΕΖ, κορυφὴ δὲ τὸ Η σημεῖον· δεῖ δὴ εὑρεῖν τμῆμα σφαίρας, ὃ ἔσται τῷ μὲν ΑΒΓ τμήματι ἴσον, τῷ δὲ ΕΖΗ ὅμοιον. [Omitted graphic marker]
10 Εὑρήσθω καὶ ἔστω τὸ ΘΚΛ, καὶ ἔστω αὐτοῦ βάσις μὲν ὁ περὶ διάμετρον τὴν ΘΚ κύκλος, κορυφὴ δὲ τὸ Λ σημεῖον· ἔστωσαν δὴ καὶ κύκλοι ἐν ταῖς σφαίραις οἱ ΑΝΒΓ, ΘΞΚΛ, ΕΟΖΗ, διάμετροι δὲ αὐτῶν πρὸς ὀρθὰς ταῖς βάσεσιν τῶν τμημάτων αἱ ΓΝ, ΛΞ, ΗΟ, καὶ ἔστω κέντρα τὰ Π, Ρ, Σ,
15καὶ πεποιήσθω, ὡς μὲν συναμφότερος ἡ ΠΝ, ΝΤ πρὸς τὴν115

1

.

116

ΝΤ, οὕτως ἡ ΧΤ πρὸς ΤΓ, ὡς δὲ συναμφότερος ἡ ΡΞ, ΞΥ πρὸς ΞΥ, οὕτως ἡ ΨΥ πρὸς ΥΛ, ὡς δὲ συναμφότερος ἡ ΣΟ, ΟΦ πρὸς ΟΦ, οὕτως ἡ ΩΦ πρὸς ΦΗ, καὶ νοείσθωσαν κῶνοι, ὧν βάσεις μέν εἰσιν οἱ περὶ διαμέτρους τὰς ΑΒ,
5ΘΚ, ΕΖ κύκλοι, κορυφαὶ δὲ τὰ Χ, Ψ, Ω σημεῖαι· ἔσται δὴ ἴσος ὁ μὲν ΑΒΧ κῶνος τῷ ΑΒΓ τμήματι τῆς σφαίρας, ὁ δὲ ΨΘΚ τῷ ΘΚΛ, ὁ δὲ ΕΩΖ τῷ ΕΗΖ· τοῦτο γὰρ δέδεικται. Καὶ ἐπεὶ ἴσον ἐστὶ τὸ ΑΒΓ τμῆμα τῆς σφαίρας τῷ ΘΚΛ τμήματι, ἴσος ἄρα καὶ ὁ ΑΧΒ κῶνος τῷ ΨΘΚ κώνῳ [τῶν
10δὲ ἴσων κώνων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν]· ἔστιν ἄρα, ὡς ὁ κύκλος ὁ περὶ διάμετρον τὴν ΑΒ πρὸς τὸν κύκλον τὸν περὶ διάμετρον τὴν ΘΚ, οὕτως ἡ ΨΥ πρὸς ΧΤ. Ὡς δὲ ὁ κύκλος πρὸς τὸν κύκλον, τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ· ὡς ἄρα τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ, οὕτως ἡ
15ΨΥ πρὸς ΧΤ. Καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΕΖΗ τμῆμα τῷ ΘΚΛ τμήματι, ὅμοιος ἄρα ἐστὶ καὶ ὁ ΕΖΩ κῶνος τῷ ΨΘΚ κώνῳ [τοῦτο γὰρ δειχθήσεται]· ἔστιν ἄρα, ὡς ἡ ΩΦ πρὸς τὴν ΕΖ, οὕτως ἡ ΨΥ πρὸς ΘΚ. Λόγος δὲ τῆς ΩΦ πρὸς τὴν ΕΖ δοθείς· λόγος ἄρα καὶ τῆς ΨΥ πρὸς τὴν
20ΘΚ δοθείς. Ὁ αὐτὸς ἔστω ὁ τῆς ΧΤ πρὸς Δ· καί ἐστι δοθεῖσα ἡ ΧΤ· δοθεῖσα ἄρα καὶ ἡ Δ. Καὶ ἐπεί ἐστιν, ὡς ἡ ΨΥ πρὸς ΧΤ, τουτέστι τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ, οὕτως ἡ ΘΚ πρὸς Δ, κείσθω τῷ ἀπὸ ΘΚ ἴσον τὸ ὑπὸ ΑΒ, ϛ· ἔσται ἄρα καί, ὡς τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ, οὕτως ἡ
25ΑΒ πρὸς τὴν ϛ. Ἐδείχθη δὲ καί, ὡς τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ, οὕτως ἡ ΘΚ πρὸς Δ, καὶ ἐναλλάξ, ὡς ἡ ΑΒ πρὸς
ΘΚ, οὕτως ἡ ϛ πρὸς Δ. Ὡς δὲ ἡ ΑΒ πρὸς ΘΚ, οὕτως ἡ116

1

.

117

ΘΚ πρὸς ϛ [διὰ τὸ ἴσον εἶναι τὸ ἀπὸ ΘΚ τῷ ὑπὸ τῶν ΑΒ, ϛ]· ὡς ἄρα ἡ ΑΒ πρὸς ΘΚ, οὕτως ἡ ΘΚ πρὸς ϛ καὶ ἡ ϛ πρὸς Δ. Δύο ἄρα δοθεισῶν τῶν ΑΒ, Δ δύο μέσαι κατὰ τὸ συνεχὲς ἀνάλογόν εἰσιν αἱ ΘΚ, ϛ.
5 Συντεθήσεται δὴ τὸ πρόβλημα οὕτως· ἔστω, ᾧ μὲν δεῖ ἴσον τμῆμα συστήσθαι, τὸ ΑΒΓ, ᾧ δὲ ὅμοιον, τὸ ΕΖΗ, καὶ ἔστωσαν μέγιστοι κύκλοι τῶν σφαιρῶν οἱ ΑΒΓΝ, ΕΗΖΟ, διάμετροι δὲ αὐτῶν αἱ ΓΝ, ΗΟ καὶ κέντρα τὰ Π, Σ, καὶ πεποιήσθω, ὡς μὲν συναμφότερος ἡ ΠΝ, ΝΤ πρὸς ΝΤ,
10οὕτως ἡ ΧΤ πρὸς ΤΓ, ὡς δὲ συναμφότερος ἡ ΣΟΦ πρὸς ΟΦ, ἡ ΩΦ πρὸς ΦΗ· ἴσος ἄρα ἐστὶν ὁ μὲν ΧΑΒ κῶνος τῷ ΑΒΓ τμήματι τῆς σφαίρας, ὁ δὲ ΖΩΕ τῷ ΕΗΖ. Πεποιήσθω, ὡς ἡ ΩΦ πρὸς ΕΖ, οὕτως ἡ ΧΤ πρὸς Δ, καὶ δύο δοθεισῶν εὐθειῶν τῶν ΑΒ, Δ δύο μέσαι ἀνάλογον εἰλήφθωσαν αἱ ΘΚ,
15ϛ, ὥστε εἶναι, ὡς τὴν ΑΒ πρὸς ΘΚ, οὕτως τὴν ΚΘ πρὸς ϛ καὶ τὴν ϛ πρὸς Δ, καὶ ἐπὶ τῆς ΘΚ κύκλου τμῆμα ἐπεστάσθω τὸ ΘΚΛ ὅμοιον τῷ ΕΖΗ κύκλου τμήματι, καὶ ἀναπεπληρώ‐ σθω ὁ κύκλος, καὶ ἔστω αὐτοῦ διάμετρος ἡ ΛΞ, καὶ νο‐ είσθω σφαῖρα, ἧς μέγιστος κύκλος ἐστὶν ὁ ΛΘΞΚ, κέντρον
20δὲ τὸ Ρ, καὶ διὰ τῆς ΘΚ ἐπίπεδον ὀρθὸν ἐκβεβλήσθω πρὸς τὴν ΛΞ· ἔσται δὴ τὸ τμῆμα τῆς σφαίρας τὸ ἐπὶ τὰ αὐτὰ τῷ Λ ὅμοιον τῷ ΕΗΖ τμήματι τῆς σφαίρας, ἐπειδὴ καὶ τῶν κύκλων τὰ τμήματα ἦν ὅμοια. Λέγω δὲ ὅτι καὶ ἴσον ἐστὶ τῷ ΑΒΓ τμήματι τῆς σφαίρας. Πεποιήσθω, ὡς συναμφότερος
25ἡ ΡΞ, ΞΥ πρὸς τὴν ΞΥ, οὕτως ἡ ΨΥ πρὸς ΥΛ· ἴσος ἄρα ὁ ΨΘΚ κῶνος τῷ ΘΚΛ τμήματι τῆς σφαίρας. Καὶ ἐπειδὴ ὅμοιός ἐστιν ὁ ΨΘΚ κῶνος τῷ ΖΩΕ κώνῳ, ἔστιν ἄρα, ὡς ἡ ΦΩ πρὸς ΕΖ, τουτέστιν ἡ ΧΤ πρὸς Δ, οὕτως ἡ ΨΥ πρὸς
ΘΚ· καὶ ἐναλλὰξ καὶ ἀνάπαλιν· ὡς ἄρα ἡ ΨΥ πρὸς ΧΤ,117

1

.

118

ἡ ΘΚ πρὸς Δ. Καὶ ἐπειδὴ ἀνάλογόν εἰσιν αἱ ΑΒ, ΚΘ, ϛ, Δ, ἔστιν, ὡς τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΘΚ, ἡ ΘΚ πρὸς Δ. Ὡς δὲ ἡ ΘΚ πρὸς Δ, ἡ ΨΥ πρὸς ΧΤ· καὶ ὡς ἄρα τὸ ἀπὸ ΑΒ πρὸς τὸ ἀπὸ ΚΘ, τουτέστιν ὁ περὶ διάμετρον τὴν ΑΒ κύκλος
5πρὸς τὸν περὶ διάμετρον τὴν ΘΚ κύκλον, οὕτως ἡ ΨΥ πρὸς τὴν ΧΤ· ἴσος ἄρα ἐστὶν ὁ ΧΑΒ κῶνος τῷ ΨΘΚ κώνῳ· ὥστε καὶ τὸ ΑΒΓ τμῆμα τῆς σφαίρας ἴσον ἐστὶ τῷ ΘΚΛ τμήματι τῆς σφαίρας. Τῷ δοθέντι ἄρα τμήματι τῷ ΑΓΒ ἴσον καὶ ἄλλῳ δοθέντι ὅμοιον τῷ ΕΖΗ τὸ αὐτὸ συνέσταται
10τὸ ΘΚΛ.
ϛʹ. Δύο δοθέντων σφαίρας τμημάτων εἴτε τῆς αὐτῆς εἴτε μὴ εὑρεῖν τμῆμα σφαίρας, ὃ ἔσται ἑνὶ μὲν τῶν δοθέντων ὅμοιον, τὴν δὲ ἐπιφάνειαν ἕξει ἴσην τῇ τοῦ ἑτέρου τμήματος
15ἐπιφανείᾳ. [Omitted graphic marker] Ἔστω τὰ δοθέντα τμήματα σφαιρικὰ κατὰ τὰς ΑΒΓ, ΔΕΖ περιφερείας, καὶ ἔστω, ᾧ μὲν δεῖ ὅμοιον εὑρεῖν, τὸ κατὰ τὴν ΑΒΓ περιφέρειαν, οὗ δὲ τὴν ἐπιφάνειαν ἴσην
ἔχειν τῇ ἐπιφανείᾳ, τὸ κατὰ τὴν ΔΕΖ.118

1

.

119

Καὶ γεγενήσθω, καὶ ἔστω τὸ ΚΛΜ τμῆμα τῆς σφαίρας τῷ μὲν ΑΒΓ τμήματι ὅμοιον, τὴν δὲ ἐπιφάνειαν ἴσην ἐχέτω τῇ τοῦ ΔΕΖ τμήματος ἐπιφανείᾳ, καὶ νοείσθω τὰ κέντρα τῶν σφαιρῶν, καὶ δι’ αὐτῶν ἐπίπεδα ἐκβεβλήσθω ὀρθὰ
5πρὸς τὰς τῶν τμημάτων βάσεις, καὶ ἐν μὲν ταῖς σφαίραις τομαὶ ἔστωσαν οἱ ΚΛΜΝ, ΒΑΓΘ, ΕΖΗΔ μέγιστοι κύκλοι, ἐν δὲ ταῖς βάσεσι τῶν τμημάτων αἱ ΚΜ, ΑΓ, ΔΖ εὐθεῖαι, διάμετροι δὲ τῶν σφαιρῶν πρὸς ὀρθὰς οὖσαι ταῖς ΚΜ, ΑΓ, ΔΖ ἔστωσαν αἱ ΛΝ, ΒΘ, ΕΗ, καὶ ἐπεζεύχθωσαν αἱ ΛΜ,
10ΒΓ, ΕΖ. Καὶ ἐπεὶ ἴση ἐστὶν ἡ τοῦ ΚΛΜ τμήματος τῆς σφαίρας ἐπιφάνεια τῇ τοῦ ΔΕΖ τμήματος ἐπιφανείᾳ, ἴσος ἄρα ἐστὶν καὶ ὁ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΛΜ, τῷ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΕΖ [αἱ γὰρ ἐπιφάνειαι τῶν εἰρημένων τμημάτων ἴσαι ἐδείχθησαν
15κύκλοις, ὧν αἱ ἐκ τῶν κέντρων ἴσαι εἰσὶν ταῖς ἀπὸ τῶν κορυφῶν τῶν τμημάτων ἐπὶ τὰς βάσεις ἐπιζευγνυούσαις]· ὥστε καὶ ἡ ΜΑ τῇ ΕΖ ἴση ἐστίν. Ἐπεὶ δὲ ὅμοιόν ἐστι τὸ ΚΛΜ τῷ ΑΒΓ τμήματι, ἔστιν, ὡς ἡ ΛΡ πρὸς ΡΝ, ἡ ΒΠ πρὸς ΠΘ· καὶ ἀνάπαλιν καὶ συνθέντι, ὡς ἡ ΝΛ πρὸς ΛΡ,
20οὕτως ἡ ΘΒ πρὸς ΒΠ. Ἀλλὰ καί, ὡς ἡ ΡΛ πρὸς ΛΜ, οὕτως ἡ ΒΠ πρὸς ΓΒ [ὅμοια γὰρ τὰ τρίγωνα]· ὡς ἄρα ἡ ΝΛ πρὸς ΛΜ, τουτέστι πρὸς ΕΖ, οὕτως ἡ ΘΒ πρὸς ΒΓ. Καὶ ἐναλλάξ· λόγος δὲ τῆς ΕΖ πρὸς ΒΓ δοθείς· δοθεῖσα γὰρ ἑκατέρα· λόγος ἄρα καὶ τῆς ΛΝ πρὸς ΒΘ δοθείς. Καί
25ἐστι δοθεῖσα ἡ ΒΘ· δοθεῖσα ἄρα καὶ ἡ ΛΝ· ὥστε ἄρα καὶ ἡ σφαῖρα δοθεῖσά ἐστιν. Συντεθήσεται δὴ οὕτως· ἔστω τὰ δοθέντα δύο τμήματα
σφαίρας τὰ ΑΒΓ, ΔΕΖ, τὸ μὲν ΑΒΓ, ᾧ δεῖ ὅμοιον, τὸ δὲ119

1

.

120

ΔΕΖ, οὗ τὴν ἐπιφάνειαν ἴσην ἔχειν τῇ ἐπιφανείᾳ, καὶ τὰ αὐτὰ κατεσκευάσθω τοῖς ἐπὶ τῆς ἀναλύσεως, καὶ πεποιή‐ σθω, ὡς [μὲν] ἡ ΒΓ πρὸς ΕΖ, οὕτως ἡ ΒΘ πρὸς ΛΝ, καὶ περὶ διάμετρον τὴν ΛΝ κύκλος γεγράφθω, καὶ νοείσθω
5σφαῖρα, ἧς μέγιστος ἔστω κύκλος ὁ ΛΚΝΜ, καὶ τετμήσθω ἡ ΝΛ κατὰ τὸ Ρ, ὥστε εἶναι, ὡς τὴν ΘΠ πρὸς ΠΒ, τὴν ΝΡ πρὸς ΡΛ, καὶ διὰ τοῦ Ρ ἐπιπέδῳ τετμήσθω ἡ ἐπιφάνεια ὀρθῷ πρὸς τὴν ΛΝ, καὶ ἐπεζεύχθω ἡ ΛΜ· ὅμοια ἄρα ἐστὶν τὰ ἐπὶ τῶν ΚΜ, ΑΓ εὐθειῶν τῶν κύκλων τμήματα·
10ὥστε καὶ τὰ τμήματα τῶν σφαιρῶν ἐστιν ὅμοια. Καὶ ἐπεί ἐστιν, ὡς ἡ ΘΒ πρὸς ΒΠ, οὕτως ἡ ΝΛ πρὸς ΛΡ· καὶ γὰρ τὰ κατὰ διαίρεσιν· ἀλλὰ καί, ὡς ἡ ΠΒ πρὸς ΒΓ, οὕτως ἡ ΡΛ πρὸς ΛΜ, καὶ ὡς ἄρα ἡ ΘΒ πρὸς ΝΛ, ἡ ΒΓ πρὸς ΛΜ. Ἦν δὲ καί, ὣς ἡ ΘΒ πρὸς ΛΝ, ἡ ΒΓ πρὸς ΕΖ· ἴση ἄρα
15ἐστὶν ἡ ΕΖ τῇ ΛΜ· ὥστε καὶ ὁ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἐστὶν ἡ ΕΖ, ἴσος ἐστὶ τῷ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΛΜ. Καὶ ὁ μὲν τὴν ἐκ τοῦ κέντρου ἔχων τὴν ΕΖ κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΔΕΖ τμήματος, ὁ δὲ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ΛΜ, ἴσος ἐστὶ
20ἐπιφανείᾳ τῇ τοῦ ΚΛΜ τμήματος· τοῦτο γὰρ ἐν τῷ πρώτῳ δέδεικται· ἴση ἄρα καὶ ἡ ἐπιφάνεια τοῦ ΚΛΜ τμή‐ ματος τῇ ἐπιφανείᾳ τοῦ ΔΕΖ τμήματος τῆς σφαίρας. Καί ἐστιν ὅμοιον τὸ ΚΛΜ τῷ ΑΒΓ.
ζʹ.
25 Ἀπὸ τῆς δοθείσης σφαίρας τμῆμα τεμεῖν ἐπιπέδῳ, ὥστε τὸ τμῆμα πρὸς τὸν κῶνον τὸν βάσιν ἔχοντα τὴν αὐτὴν τῷ
τμήματι καὶ ὕψος ἴσον τὸν δοθέντα λόγον ἔχειν.120

1

.

121

Ἔστω ἡ δοθεῖσα σφαῖρα, ἧς μέγιστος κύκλος ὁ ΑΒΓΔ, διάμετρος δὲ αὐτῆς ἡ ΒΔ· δεῖ δὴ τὴν σφαῖραν ἐπιπέδῳ τεμεῖν τῷ διὰ τῆς ΑΓ, ὅπως τὸ ΑΒΓ τμῆμα τῆς σφαίρας πρὸς τὸν ΑΒΓ κῶνον λόγον ἔχῃ τὸν αὐτὸν τῷ δοθέντι. [Omitted graphic marker]
5 Γεγονέτω, καὶ ἔστω κέντρον τῆς σφαίρας τὸ Ε, καὶ ὡς συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ, οὕτως ἡ ΗΖ πρὸς ΖΒ· ἴσος ἄρα ἐστὶν ὁ ΑΓΗ κῶνος τῷ ΑΒΓ τμήματι. Λόγος ἄρα καὶ τοῦ ΑΗΓ κώνου πρὸς τὸν ΑΒΓ κῶνον δοθείς· λόγος ἄρα τῆς ΗΖ πρὸς ΖΒ δοθείς. Ὡς δὲ ἡ ΗΖ πρὸς ΖΒ, συναμ‐
10φότερος ἡ ΕΔΖ πρὸς ΔΖ· λόγος ἄρα συναμφοτέρου τῆς ΕΔΖ πρὸς ΔΖ δοθείς [ὥστε καὶ τῆς ΕΔ πρὸς ΔΖ· δοθεῖσα ἄρα καὶ ἡ ΔΖ]· ὥστε καὶ ἡ ΑΓ. Καὶ ἐπεὶ συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ μείζονα λόγον ἔχει ἤπερ συναμφότερος ἡ ΕΔΒ πρὸς ΔΒ, καί ἐστιν συναμφότερος μὲν ἡ ΕΔΒ τρὶς ἡ
15ΕΔ, ἡ δὲ ΒΔ δὶς ἡ ΕΔ, συναμφότερος ἄρα ἡ ΕΔΖ πρὸς ΔΖ μείζονα λόγον ἔχει τοῦ ὃν ἔχει τρία πρὸς δύο. Καί ἐστιν ὁ συναμφοτέρου τῆς ΕΔΖ πρὸς ΖΔ λόγος ὁ αὐτὸς τῷ δοθέντι· δεῖ ἄρα τὸν διδόμενον λόγον εἰς τὴν σύνθεσιν μείζονα εἶναι τοῦ ὃν ἔχει τρία πρὸς δύο.
20Συντεθήσεται δὴ τὸ πρόβλημα οὕτως· ἔστω ἡ δοθεῖσα
σφαῖρα, ἧς μέγιστος κύκλος ὁ ΑΒΓΔ, διάμετρος δὲ ἡ ΒΔ,121

1

.

122

[Omitted graphic marker] κέντρον δὲ τὸ Ε, ὁ δὲ δοθεὶς λόγος ὁ τῆς ΘΚ πρὸς ΚΛ μείζων τοῦ ὃν ἔχει τρία πρὸς δύο. Ἔστι δέ, ὡς τρία πρὸς δύο, συναμφότερος ἡ ΕΔΒ πρὸς ΔΒ· καὶ ἡ ΘΚ ἄρα πρὸς ΚΛ μείζονα λόγον ἔχει τοῦ ὃν ἔχει συναμφότερος ἡ ΕΔΒ
5πρὸς ΔΒ· διελόντι ἄρα ἡ ΘΛ πρὸς ΛΚ μείζονα λόγον ἔχει ἤπερ ἡ ΕΔ πρὸς ΔΒ. Καὶ πεποιήσθω, ὡς ἡ ΘΛ πρὸς ΛΚ, οὕτως ἡ ΕΔ πρὸς ΔΖ, καὶ διὰ τοῦ Ζ τῇ ΒΔ πρὸς ὀρθὰς ἤχθω ἡ ΑΖΓ, καὶ διὰ τῆς ΓΑ ἤχθω ἐπίπεδον ὀρθὸν πρὸς τὴν ΒΔ· λέγω ὅτι τὸ [ἀπὸ] ΑΒΓ τμῆμα τῆς σφαίρας πρὸς
10τὸν ΑΒΓ κῶνον λόγον ἔχει τὸν αὐτὸν τῷ ΘΚ πρὸς ΚΛ. Πεποιήσθω γάρ, ὡς συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ, οὕτως ἡ ΗΖ πρὸς ΖΒ· ἴσος ἄρα ἐστὶν ὁ ΓΑΗ κῶνος τῷ ΑΒΓ τμήματι τῆς σφαίρας. Καὶ ἐπεί ἐστιν, ὡς ἡ ΘΚ πρὸς ΚΛ, οὕτως συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ, τουτέστιν ἡ
15ΗΖ πρὸς ΖΒ, τουτέστιν ὁ ΑΗΓ κῶνος πρὸς τὸν ΑΒΓ κῶνον, ἴσος δὲ ὁ ΑΗΓ κῶνος τῷ ΑΒΓ τμήματι τῆς σφαίρας, ὡς ἄρα τὸ ΑΒΓ τμῆμα πρὸς τὸν ΑΒΓ κῶνον, οὕτως ἡ ΘΚ
πρὸς ΚΛ.122

1

.

123

ηʹ. Ἐὰν σφαῖρα ἐπιπέδῳ τμηθῇ μὴ διὰ τοῦ κέντρου, τὸ μεῖζον τμῆμα πρὸς τὸ ἔλασσον ἐλάσσονα μὲν λόγον ἔχει ἢ διπλάσιον τοῦ ὃν ἔχει ἡ τοῦ μείζονος τμήματος ἐπιφάνεια
5πρὸς τὴν τοῦ ἐλάσσονος ἐπιφάνειαν, μείζονα δὲ ἢ ἡμιόλιον. Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓΔ καὶ διάμετρος ἡ ΒΔ, καὶ τετμήσθω ἐπιπέδῳ διὰ τῆς ΑΓ ὀρθῷ πρὸς τὸν ΑΒΓΔ κύκλον, καὶ ἔστω μεῖζον τμῆμα τῆς σφαίρας τὸ ΑΒΓ· λέγω ὅτι τὸ ΑΒΓ τμῆμα πρὸς τὸ ΑΔΓ
10ἐλάσσονα μὲν ἢ διπλασίονα λόγον ἔχει ἤπερ ἡ ἐπιφάνεια τοῦ μείζονος τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ ἐλάσσονος τμήματος, μείζονα δὲ ἢ ἡμιόλιον. [Omitted graphic marker] Ἐπεζεύχθωσαν γὰρ αἱ ΒΑΔ, καὶ ἔστω κέντρον τὸ Ε, καὶ πεποιήσθω, ὡς μὲν συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ, ἡ ΘΖ
15πρὸς ΖΒ, ὡς δὲ συναμφότερος ἡ ΕΒΖ πρὸς ΒΖ, οὕτως ἡ ΗΖ πρὸς ΖΔ, καὶ νοείσθωσαν κῶνοι βάσιν ἔχοντες τὸν περὶ διάμετρον τὴν ΑΓ κύκλον, κορυφὰς δὲ τὰ Θ, Η σημεῖα· ἔσται δὴ ἴσος ὁ μὲν ΑΘΓ κῶνος τῷ ΑΒΓ τμήματι τῆς σφαίρας, ὁ δὲ ΑΓΗ τῷ ΑΔΓ, καί ἐστιν, ὡς τὸ ἀπὸ ΒΑ πρὸς
20τὸ ἀπὸ ΑΔ, οὕτως ἡ ἐπιφάνεια τοῦ ΑΒΓ τμήματος πρὸς123

1

.

124

τὴν ἐπιφάνειαν τοῦ ΑΔΓ τμήματος· τοῦτο γὰρ προ‐ γέγραπται [δεικτέον ὅτι τὸ μεῖζον τμῆμα τῆς σφαίρας πρὸς τὸ ἔλασσον ἐλάσσονα λόγον ἔχει ἢ διπλάσιον ἤπερ ἡ ἐπιφάνεια τοῦ μείζονος τμήματος πρὸς τὴν ἐπιφάνειαν
5τοῦ ἐλάσσονος τμήματος]. Λέγω ὅτι καὶ ὁ ΑΘΓ κῶνος πρὸς τὸν ΑΗΓ, τουτέστιν ἡ ΖΘ πρὸς ΖΗ, ἐλάσσονα λόγον ἔχει ἢ διπλάσιον τοῦ ὃν ἔχει τὸ ἀπὸ ΒΑ πρὸς τὸ ἀπὸ ΑΔ, τουτέσ‐ τιν ἡ ΒΖ πρὸς ΖΔ. Καὶ ἐπεί ἐστιν, ὡς [μὲν] συναμφότερος ἡ ΕΔΖ πρὸς ΔΖ, οὕτως ἡ ΘΖ πρὸς ΖΒ [ὡς δὲ συναμφότερος
10ἡ ΕΒΖ πρὸς ΒΖ, οὕτως ἡ ΖΗ πρὸς ΖΔ], ἔσται καί, ὡς ἡ ΒΖ πρὸς ΖΔ, ἡ ΘΒ πρὸς ΒΕ· ἴση γὰρ ἡ ΒΕ τῇ ΔΕ [τοῦτο γὰρ ἐν τοῖς ἐπάνω συναποδέδεικται]. Πάλιν, ἐπεί ἐστιν, ὡς συναμφότερος ἡ ΕΒΖ πρὸς ΒΖ, ἡ ΗΖ πρὸς ΖΔ, ἔστω τῇ ΒΕ ἴση ἡ ΒΚ· δῆλον γὰρ ὅτι μείζων ἐστὶν ἡ ΘΒ τῆς ΒΕ,
15ἐπεὶ καὶ ΒΖ τῆς ΖΔ· καὶ ἔσται, ὡς ἡ ΚΖ πρὸς ΖΒ, ἡ ΗΖ πρὸς ΖΔ. Ὡς δὲ ἡ ΖΒ πρὸς ΖΔ, ἐδείχθη ἡ ΘΒ πρὸς ΒΕ, ἴση δὲ ἡ ΒΕ τῇ ΚΒ· ὡς ἄρα ἡ ΘΒ πρὸς ΒΚ, οὕτως ἡ ΚΖ πρὸς ΖΗ. Καὶ ἐπεὶ ἡ ΘΖ πρὸς ΖΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΘΒ πρὸς ΒΚ, ὡς δὲ ἡ ΘΒ πρὸς ΒΚ, ἐδείχθη ἡ ΚΖ πρὸς ΖΗ,
20ἡ ΘΖ ἄρα πρὸς ΖΚ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΚΖ πρὸς ΖΗ· ἔλασσον ἄρα τὸ ὑπὸ τῶν ΘΖΗ τοῦ ἀπὸ ΖΚ. Τὸ ἄρα ὑπὸ τῶν ΘΖΗ πρὸς τὸ ἀπὸ ΖΗ [τουτέστιν ἡ ΖΘ πρὸς ΖΗ] ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει τὸ ἀπὸ τῆς ΚΖ πρὸς τὸ ἀπὸ ΖΗ [τὸ δὲ ἀπὸ ΚΖ πρὸς τὸ ἀπὸ ΖΗ διπλασίονα
25λόγον ἔχει ἤπερ ἡ ΚΖ πρὸς ΖΗ]· ἡ ἄρα ΘΖ πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἢ διπλασίονα τοῦ ὃν ἔχει ἡ ΚΖ πρὸς ΖΗ [ἡ ΚΖ πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἢ διπλασίονα τοῦ ὃν ἔχει ἡ ΒΖ πρὸς ΖΔ]· τοῦτο δὲ ἐζητοῦμεν. Καὶ ἐπεὶ ἴση
ἐστὶν ἡ ΒΕ τῇ ΕΔ, ἔλασσον ἄρα τὸ ὑπὸ τῶν ΒΖΔ τοῦ ὑπὸ124

1

.

125

τῶν ΒΕΔ· ἡ ΖΒ ἄρα πρὸς ΒΕ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΕΔ πρὸς ΔΖ, τουτέστιν ἡ ΘΒ πρὸς ΒΖ· ἔλασσον ἄρα τὸ ἀπὸ ΖΒ τοῦ ὑπὸ τῶν ΘΒΕ, τουτέστι τοῦ ὑπὸ τῶν ΘΒΚ. Ἔστω ἴσον τὸ ἀπὸ ΒΝ τῷ ὑπὸ ΘΒΚ· ἔστιν ἄρα, ὡς ἡ ΘΒ
5πρὸς ΒΚ, τὸ ἀπὸ ΘΝ πρὸς τὸ ἀπὸ ΝΚ. Τὸ δὲ ἀπὸ ΘΖ πρὸς τὸ ἀπὸ ΖΚ μείζονα λόγον ἔχει ἢ τὸ ἀπὸ ΘΝ πρὸς τὸ ἀπὸ ΝΚ [καὶ τὸ ἀπὸ ΘΖ ἄρα πρὸς τὸ ἀπὸ ΖΚ μείζονα λόγον ἔχει ἤπερ ἡ ΘΒ πρὸς ΒΚ, τουτέστιν ἡ ΘΒ πρὸς ΒΕ, του‐ τέστιν ἡ ΚΖ πρὸς ΖΗ]· ἡ ἄρα ΘΖ πρὸς ΖΗ μείζονα λόγον
10ἔχει ἢ ἡμιόλιον τοῦ τῆς ΚΖ πρὸς ΖΗ [τοῦτο γὰρ ἐπὶ τέλει]. Καί ἐστιν, ὡς μὲν ἡ ΘΖ πρὸς ΖΗ, ὁ ΑΘΓ κῶνος πρὸς τὸν ΑΗΓ κῶνον, τουτέστι τὸ ΑΒΓ τμῆμα πρὸς τὸ ΑΔΓ τμῆμα, ὡς δὲ ἡ ΚΖ πρὸς ΖΗ, ἡ ΒΖ πρὸς ΖΔ, του‐ τέστι τὸ ἀπὸ ΒΑ πρὸς τὸ ἀπὸ ΑΔ, τουτέστιν ἡ ἐπιφάνεια
15τοῦ ΑΒΓ τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ ΑΔΓ τμήμα‐ τος· ὥστε τὸ μεῖζον τμῆμα πρὸς τὸ ἔλασσον ἐλάσσονα μὲν ἢ διπλασίονα λόγον ἔχει τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ μείζονος τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ ἐλάσσονος τμήματος, μείζονα δὲ ἢ ἡμιόλιον.
20tΑΛΛΩΣ.
21 Ἔστω σφαῖρα, ἐν ᾗ μέγιστος κύκλος ὁ ΑΒΓΔ, διάμετρος δὲ ἡ ΑΓ, κέντρον δὲ τὸ Ε, καὶ τετμήσθω ἐπιπέδῳ ὀρθῷ διὰ τῆς ΒΔ πρὸς τὴν ΑΓ· λέγω ὅτι τὸ μεῖζον τμῆμα τὸ ΔΑΒ πρὸς τὸ ἔλασσον τὸ ΒΓΔ ἐλάσσονα ἢ διπλάσιον λόγον
25ἔχει τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ ΑΒΔ τμήματος πρὸς τὴν ἐπιφάνειαν τοῦ ΒΓΔ τμήματος, μείζονα δὲ ἢ ἡμιόλιον. Ἐπεζεύχθωσαν γὰρ αἱ ΑΒ, ΒΓ· ὁ δὲ τῆς ἐπιφανείας πρὸς τὴν ἐπιφάνειαν λόγος ὁ τοῦ κύκλου ἐστίν, οὗ ἡ ἐκ
τοῦ κέντρου ἡ ΑΒ, πρὸς τὸν κύκλον, οὗ ἡ ἐκ τοῦ κέντρου125

1

.

126

[Omitted graphic marker] ἡ ΒΓ, τουτέστιν ὁ τῆς ΑΘ πρὸς τὴν ΘΓ. Κείσθω τῇ ἐκ τοῦ κέντρου τοῦ κύκλου ἴση ἑκατέρα τῶν ΑΖ, ΓΗ. Ὁ δὴ τοῦ ΒΑΔ τμήματος πρὸς τὸ ΒΓΔ λόγος συνῆπται ἐκ τοῦ ὃν ἔχει τὸ ΒΑΔ τμῆμα πρὸς τὸν κῶνον, οὗ [ἡ] βάσις μέν
5ἐστιν ὁ περὶ διάμετρον τὴν ΒΔ κύκλος, κορυφὴ δὲ τὸ Α σημεῖον, καὶ ὁ αὐτὸς κῶνος πρὸς τὸν κῶνον τὸν βάσιν μὲν ἔχοντα τὴν αὐτήν, κορυφὴν δὲ τὸ Γ σημεῖον, καὶ ὁ εἰρημένος κῶνος πρὸς τὸ ΒΓΔ τμῆμα. Ἀλλ’ ὁ μὲν τοῦ ΒΑΔ τμήματος λόγος πρὸς τὸν ΒΑΔ κῶνον ὁ τῆς ΗΘ ἐστὶ πρὸς ΘΓ, ὁ δὲ
10τοῦ κώνου πρὸς τὸν κῶνον ὁ τῆς ΑΘ πρὸς ΘΓ, ὁ δὲ τοῦ ΒΓΔ κώνου πρὸς τὸ τμῆμα τὸ ΒΓΔ ὁ τῆς ΑΘ ἐστὶ πρὸς ΘΖ· ὁ δὲ συνημμένος ἐκ τοῦ τῆς ΗΘ πρὸς ΘΓ καὶ τῆς ΑΘ πρὸς ΘΓ ὁ τοῦ ὑπὸ τῶν ΗΘΑ ἐστὶ πρὸς τὸ ἀπὸ ΘΓ, ὁ δὲ τοῦ ὑπὸ ΗΘ, ΘΑ πρὸς τὸ ἀπὸ ΘΓ μετὰ τοῦ τῆς ΑΘ πρὸς ΘΖ ὁ τοῦ
15ὑπὸ τῶν ΗΘ, ΘΑ ἐστὶν ἐπὶ τὴν ΘΑ πρὸς τὸ ἀπὸ ΘΓ ἐπὶ τὴν ΘΖ, ὁ δὲ τοῦ ὑπὸ τῶν ΗΘΑ ἐπὶ τὴν ΘΑ ὁ τοῦ ἀπὸ τῆς ΘΑ ἐστὶ ἐπὶ τὴν ΘΗ· ὅτι ἄρα τὸ ἀπὸ ΘΑ ἐπὶ τὴν ΘΗ πρὸς τὸ ἀπὸ ΓΘ ἐπὶ τὴν ΘΖ ἐλάσσονα λόγον ἔχει τοῦ τῆς
ΑΘ πρὸς ΘΓ διπλασίου [τοῦ δὲ τῆς ΑΘ πρὸς ΘΓ διπλασίων126

1

.

127

ἐστὶν ὁ τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΘΓ]. Τὸ ἄρα ἀπὸ ΑΘ ἐπὶ τὴν ΗΘ πρὸς τὸ ἀπὸ ΘΓ ἐπὶ τὴν ΘΖ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ἀπὸ ΑΘ ἐπὶ τὴν ΗΘ πρὸς τὸ ἀπὸ ΓΘ ἐπὶ τὴν ΘΗ. Ὅτι ἄρα μεῖζόν ἐστι τὸ ἀπὸ ΓΘ ἐπὶ τὴν ΖΘ τοῦ ἀπὸ ΓΘ
5ἐπὶ τὴν ΘΗ. Ὅτι ἄρα μείζων ἐστὶν ἡ ΘΖ τῆς ΘΗ. Φημὶ δὴ ὅτι καὶ τὸ μεῖζον τμῆμα πρὸς τὸ ἔλασσον μείζονα λόγον ἔχει ἢ ἡμιόλιον τοῦ τῆς ἐπιφανείας λόγου. Ἀλλ’ ὁ μὲν τῶν τμημάτων ἐδείχθη ὁ αὐτὸς τῷ ὃν ἔχει τὸ ἀπὸ ΑΘ ἐπὶ τὴν ΘΗ πρὸς τὸ ἀπὸ ΘΓ ἐπὶ τὴν ΘΖ, τοῦ δὲ τῆς ἐπιφα‐
10νείας λόγου ἡμιόλιός ἐστιν ὁ τοῦ ἀπὸ ΑΒ κύβου πρὸς τὸν ἀπὸ ΒΓ κύβον· φημὶ δὴ ὅτι τὸ ἀπὸ ΑΘ ἐπὶ τὴν ΘΗ πρὸς τὸ ἀπὸ ΓΘ ἐπὶ τὴν ΘΖ μείζονα λόγον ἔχει ἤπερ [ὁ ἀπὸ τῆς ΑΒ κύβος πρὸς τὸν ἀπὸ τῆς ΒΓ κύβον, τουτέστιν] ὁ ἀπὸ τῆς ΑΘ κύβος πρὸς τὸν ἀπὸ ΘΒ κύβον, τουτέστιν ὁ τοῦ ἀπὸ
15ΑΘ πρὸς τὸ ἀπὸ ΒΘ καὶ ὁ τῆς ΑΘ πρὸς ΘΒ. Ὁ δὲ τοῦ ἀπὸ ΑΘ πρὸς τὸ ἀπὸ ΘΒ προσλαβὼν τὸν τῆς ΑΘ πρὸς ΘΒ ὁ τοῦ ἀπὸ ΑΘ ἐστὶν πρὸς τὸ ὑπὸ τῶν ΓΘΒ· ὁ δὲ τοῦ ἀπὸ ΑΘ πρὸς τὸ ὑπὸ τῶν ΒΘΓ ὁ τοῦ ἀπὸ ΑΘ ἐστὶν ἐπὶ τὴν ΘΗ πρὸς τὸ ὑπὸ τῶν ΒΘΓ ἐπὶ τὴν ΘΗ· φημὶ δὴ ὅτι [ἄρα] τὸ
20ἀπὸ ΑΘ ἐπὶ τὴν ΘΗ πρὸς τὸ ἀπὸ ΓΘ ἐπὶ τὴν ΘΖ μείζονα λόγον ἔχει ἤπερ [τὸ ἀπὸ ΑΘ πρὸς τὸ ὑπὸ ΒΘΓ, τουτέστι] τὸ ἀπὸ ΑΘ ἐπὶ τὴν ΘΗ πρὸς τὸ ὑπὸ ΒΘΓ ἐπὶ τὴν ΘΗ. Δεικτέον οὖν ὅτι τὸ ἀπὸ ΘΓ ἐπὶ τὴν ΘΖ ἔλασσόν ἐστι τοῦ ὑπὸ τῶν ΒΘΓ ἐπὶ τὴν ΗΘ· ὃ ταὐτόν ἐστι τῷ δεῖξαι ὅτι τὸ ἀπὸ ΓΘ
25πρὸς τὸ ὑπὸ ΒΘΓ ἐλάσσονα λόγον ἔχει ἤπερ ἡ ΗΘ πρὸς ΘΖ [δεῖ ἄρα δεῖξαι ὅτι ἡ ΗΘ πρὸς ΘΖ μείζονα λόγον ἔχει
ἤπερ ἡ ΓΘ πρὸς ΘΒ].127

1

.

128

Ἤχθω ἀπὸ τοῦ Ε τῇ ΕΓ πρὸς ὀρθὰς ἡ ΕΚ καὶ ἀπὸ τοῦ Β κάθετος ἐπ’ αὐτὴν ἡ ΒΛ· ἐπίλοιπον ἡμῖν δεῖξαι δεῖ ὅτι ἡ ΗΘ πρὸς ΘΖ μείζονα λόγον ἔχει ἤπερ ἡ ΓΘ πρὸς ΘΒ. Ἴση δέ ἐστιν ἡ ΘΖ συναμφοτέρῳ τῇ ΑΘ, ΚΕ· δεῖξαι ἄρα
5δεῖ ὅτι ἡ ΗΘ πρὸς συναμφότερον τὴν ΘΑ, ΚΕ μείζονα λόγον ἔχει ἤπερ ἡ ΓΘ πρὸς ΘΒ· καὶ ἀφαιρεθείσης ἄρα ἀπὸ τῆς ΘΗ τῆς ΓΘ, ἀπὸ δὲ τῆς ΚΕ τῆς ΕΛ ἴσης τῇ ΒΘ, δεήσει δειχ‐ θῆναι ὅτι λοιπὴ ἡ ΓΗ πρὸς λοιπὴν συναμφότερον τὴν ΑΘ, ΚΛ μείζονα λόγον ἔχει ἤπερ ἡ ΓΘ πρὸς ΘΒ, τουτέστιν ἡ ΘΒ
10πρὸς ΘΑ, τουτέστιν ἡ ΛΕ πρὸς ΘΑ, καὶ ἐναλλάξ, ὅτι ἡ ΚΕ πρὸς ΕΛ μείζονα λόγον ἔχει ἤπερ συναμφότερος ἡ ΚΛ, ΘΑ πρὸς ΘΑ, καὶ διελόντι ἡ ΚΛ πρὸς ΛΕ μείζονα λόγον ἔχει ἤπερ ἡ ΚΛ πρὸς ΘΑ. Ὅτι ἐλάσσων ἐστὶν ἡ ΛΕ τῆς ΘΑ.
θʹ.
15 Τῶν τῇ ἴσῃ ἐπιφανείᾳ περιεχομένων σφαιρικῶν τμημάτων μεῖζόν ἐστι τὸ ἡμισφαίριον. Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ἡ ΑΓ, καὶ ἄλλη σφαῖρα, ἧς μέγιστος κύκλος ὁ ΕΖΗΘ, διάμετρος δὲ αὐτοῦ ἡ ΕΗ, καὶ τετμήσθω ἐπιπέδῳ ἡ μὲν
20ἑτέρα σφαῖρα διὰ τοῦ κέντρου, ἡ δὲ ἑτέρα μὴ διὰ τοῦ κέντρου, ἔστω δὲ τὰ μὲν τέμνοντα ἐπίπεδα ὀρθὰ πρὸς τὰς ΑΓ, ΕΗ διαμέτρους, καὶ τετμήσθωσαν κατὰ τὰς ΔΒ, ΖΘ γραμμάς· ἔστιν δὴ τὸ μὲν κατὰ τὴν ΖΕΘ περιφέρειαν τμῆμα τῆς σφαίρας ἡμισφαίριον [τῶν δὲ κατὰ τὴν ΒΑΔ
25περιφέρειαν τομῶν ἐν μὲν τῷ ἑτέρῳ σχήματι, πρὸς ὃ τὸ ἡλιακόν symbol
σημεῖον, μεῖζον ἡμισφαιρίου, ἐν δὲ τῷ ἑτέρῳ ἔλασσον128

1

.

129

ἡμισφαιρίου], ἴσαι δὲ ἔστωσαν αἱ τῶν εἰρημένων τμημάτων ἐπιφάνειαι· λέγω οὖν ὅτι μεῖζόν ἐστι τὸ κατὰ τὴν ΖΕΘ περιφέρειαν ἡμισφαίριον τοῦ κατὰ τὴν ΒΑΔ περιφέρειαν τμήματος. [Omitted graphic marker]
5 Ἐπεὶ γὰρ ἴσαι εἰσὶν αἱ ἐπιφάνειαι τῶν εἰρημένων τμη‐ μάτων, φανερὸν ὅτι ἴση ἐστὶν ἡ ΒΑ τῇ ΕΖ εὐθείᾳ [δέδεικται γὰρ ἑκάστου τμήματος ἡ ἐπιφάνεια ἴση οὖσα κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος εὐθείᾳ ἀγομένῃ ἐπὶ τὴν περιφέρειαν τοῦ κύκλου, ὅς ἐστι
10βάσις τοῦ τμήματος. Καὶ ἐπεὶ μείζων ἐστὶν ἡμίσεως κύκλου ἡ ΒΑΔ περιφέρεια ἐν τῷ ἑτέρῳ τμήματι, πρὸς ὃ τὸ ἡλιακόν symbol σημεῖον]· δῆλον δὲ ὅτι ἡ ΒΑ ἐλάσσων ἐστὶν ἢ
διπλασίων δυνάμει τῆς ΑΚ, τῆς δὲ ἐκ τοῦ κέντρου μείζων129

1

.

130

ἢ διπλασίων δυνάμει. Ἔστω δὴ ἡ ΒΑ τῆς ΑΡ διπλασία δυνάμει, ἔστω δὲ καὶ τῇ ἐκ τοῦ κέντρου τοῦ ΑΒΔ κύκλου ἴση ἡ ΓΞ, καὶ ὃν ἔχει λόγον ἡ ΓΞ πρὸς τὴν ΓΚ, τοῦτον ἐχέτω ἡ ΜΑ πρὸς ΑΚ, ἀπὸ δὲ τοῦ κύκλου τοῦ περὶ διάμε‐
5τρον τὴν ΒΔ κῶνος ἔστω κορυφὴν ἔχων τὸ Μ σημεῖον· [Omitted graphic marker] ἴσος δή ἐστιν οὗτος τῷ κατὰ τὴν ΒΑΔ περιφέρειαν τμήματι τῆς σφαίρας. Ἔστω καὶ τῇ ΕΛ ἴση ἡ ΕΝ, καὶ ἀπὸ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν ΘΖ κῶνος ἔστω κορυφὴν ἔχων τὸ Ν σημεῖον· ἴσος δὴ καὶ οὗτός ἐστι τῷ κατὰ τὴν
10ΘΕΖ περιφέρειαν ἡμισφαιρίῳ. Τὸ δὲ περιεχόμενον ὑπὸ τῶν ΑΡΓ μεῖζόν ἐστι τοῦ περιεχομένου ὑπὸ τῶν ΑΚΓ, διότι τὴν ἐλάσσονα πλευρὰν τῆς ἐλάσσονος τοῦ ἑτέρου μείζονα ἔχει, τὸ δὲ ἀπὸ τῆς ΑΡ ἴσον ἐστὶ τῷ περιεχομένῳ ὑπὸ τῶν ΑΚ, ΓΞ· ἥμισυ γάρ ἐστι τοῦ ἀπὸ τῆς ΑΒ· μεῖζον οὖν ἐστι καὶ
15τὸ συναμφότερον τοῦ συναμφοτέρου [τὸ ἄρα περιεχόμενον ὑπὸ τῶν ΓΑΡ μεῖζόν ἐστι τοῦ ὑπὸ τῶν ΞΚΑ]. Τῷ δὲ ὑπὸ τῶν ΞΚΑ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΜΚΓ [ὥστε μεῖζόν ἐστι τὸ
ὑπὸ τῶν ΓΑΡ τοῦ ὑπὸ τῶν ΜΚΓ]· ὥστε μείζονα λόγον130

1

.

131

ἔχει ἡ ΓΑ πρὸς [τὴν] ΚΓ ἤπερ ἡ ΜΚ πρὸς [τὴν] ΑΡ. Ὃν δὲ λόγον ἔχει ἡ ΑΓ πρὸς [τὴν] ΓΚ, τοῦτον ἔχει τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΚ· δῆλον οὖν ὅτι μείζονα λόγον ἔχει τὸ ἥμισυ τοῦ ἀπὸ τῆς ΑΒ, ὅ ἐστιν ἴσον τῷ
5ἀπὸ ΑΡ, πρὸς τὸ ἀπὸ τῆς ΒΚ ἤπερ ἡ ΜΚ πρὸς τὴν διπλα‐ σίαν τῆς ΑΡ, ἥ ἐστιν ἴση τῇ ΛΝ· μείζονα ἄρα λόγον ἔχει καὶ ὁ κύκλος ὁ περὶ διάμετρον τὴν ΖΘ πρὸς τὸν κύκλον τὸν περὶ διάμετρον τὴν ΒΔ ἢ ἡ ΜΚ πρὸς [τὴν] ΝΛ. Ὥστε μείζων ἐστὶν ὁ κῶνος ὁ βάσιν μὲν ἔχων τὸν περὶ
10διάμετρον τὴν ΖΘ κύκλον, κορυφὴν δὲ τὸ Ν σημεῖον, τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος κύκλον τὸν περὶ διάμετρον τὴν ΒΔ, κορυφὴν δὲ τὸ Μ σημεῖον· δῆλον οὖν ὅτι καὶ τὸ ἡμισφαίριον τὸ κατὰ τὴν ΕΖΘ περιφέρειαν μεῖζόν ἐστι τοῦ
τμήματος τοῦ κατὰ τὴν ΒΑΔ περιφέρειαν.131