TLG 0358 004 :: NICOMACHUS :: Excerpta NICOMACHUS Math. Excerpta Citation: Section — (line) | ||
T | Τοῦ αὐτοῦ Νικομάχου. | |
1 | Τὴν λύραν τὴν ἐκ τῆς χελώνης φασὶ τὸν Ἑρμῆν εὑρηκέναι καὶ κατασκευάσαντα ἑπτάχορδον παραδεδω‐ κέναι τὴν μάθησιν τῷ Ὀρφεῖ. Ὀρφεὺς δὲ ἐδίδαξε Θάμυριν καὶ Λῖνον· Λῖνος Ἡρακλέα, ὑφ’ οὗ καὶ | |
5 | ἀνῃρέθη. ἐδίδαξε δὲ καὶ Ἀμφίωνα τὸν Θηβαῖον, ὃς ἐπὶ τῶν ἑπτὰ χόρδων ἑπταπύλους τὰς Θήβας ᾠκοδό‐ μησεν. ἀναιρεθέντος δὲ τοῦ Ὀρφέως ὑπὸ τῶν Θρᾳκι‐ κῶν γυναικῶν τὴν λύραν αὐτοῦ βληθῆναι εἰς τὴν θάλασσαν, ἐκβληθῆναι δὲ εἰς Ἄντισσαν πόλιν τῆς | |
---|---|---|
10 | Λέσβου. εὑρόντας δὲ ἁλιέας ἐνεγκεῖν τὴν λύραν πρὸς Τέρπανδρον, τὸν δὲ κομίσαι εἰς Αἴγυπτον. [εὑρόντα δὲ αὐτὸν] ἐκπονήσαντα ἐπιδεῖξαι τοῖς ἐν Αἰγύπτῳ ἱερεῦσιν, ὡς αὐτὸν πρωθευρετὴν γεγενημένον. Τέρπανδρος μὲν οὕτω λέγεται τὴν λύραν εὑρηκέναι, | |
15 | Ἀχαιοὺς δὲ ὑπὸ Κάδμον τοῦ Ἀγήνορος παραλαβεῖν. | |
τηνικαῦτά φασιν. | 266 | |
2 | Εἰσὶν οἱ ἀριθμοὶ, ἐξ ὧν ποιοῦσιν οἱ κατὰ τὴν μουσικὴν τὰ τονιαῖα διαστήματα. ἐπὶ μὲν τοῦ διὰ τεσσάρων, ὅ φασιν ἐν ἐπιτρίτῳ λόγῳ θεωρεῖσθαι, τοῦ συνεστῶτος ἐκ δύο τόνων καί τινος, οἷον τοῦ | |
5 | ἀρχομένου ἀπὸ παρυπάτης ὑπατῶν καὶ καταλήγοντος εἰς παρυπάτην μέσων λαμβάνουσιν ἀριθμὸν ἐπίτριτον, τὸν σνϛ πρὸς τὸν ρϙβ, καὶ ἀπὸ τούτου τοῦ ρϙβ διὰ τῶν ἐπογδόων λόγων, ἐν οἷς θεωρεῖται τὰ τονιαῖα διαστήματα, (καὶ τοῦ καταλειπομένου λείμματος) συμ‐ | |
10 | πληροῦσι τὸ σνϛ. ἐπιτείνουσι τοίνυν ἀπὸ τοῦ ρϙβ τόνον καὶ ποιοῦσι τὸν σιϛ, ὅς ἐστιν ἐπόγδοος τοῦ ρϙβ· περιέχει γὰρ τὸν ρϙβ καὶ τὸ ὄγδοον αὐτοῦ τὰ κδ. καὶ πάλιν ἀπὸ τοῦ σιϛ ἐπιτείνουσι τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϛ· περιέχει γὰρ | |
15 | αὐτὸν καὶ τὸ ὄγδοον αὐτοῦ τὰ κζ. εἰς δὲ τὴν συμ‐ πλήρωσιν τοῦ διὰ τεσσάρων καὶ σνϛ ἀριθμοῦ λείπει | |
τὰ ιγ, ἅπερ οὔτε τοῦ πρώτου τόνου ἐστὶν ἡμίση, τοῦ ἐν τῷ κδ ἀριθμῷ θεωρουμένου, οὔτε τοῦ δευτέρου, τοῦ ἐν τῷ κζ. | 267 | |
20 | Ἐπὶ δὲ τοῦ διὰ πέντε, ὃ ἐν ἡμιολίῳ λόγῳ κεῖται καὶ συνέστηκεν ἐκ τριῶν τόνων καί τινος, οἷον τοῦ ἀρχομένου ἀπὸ παρυπάτης μέσων καὶ καταλήγοντος εἰς τρίτην διεζευγμένων, κατασκευάζουσι τὸ προ‐ κείμενον οὕτω. λαμβάνουσιν ἡμιόλιον ἀριθμόν τινα | |
25 | τὸν ψξη πρὸς τὸν φιβ. καὶ ἀπὸ τούτου τοῦ φιβ διὰ τῶν ἐπογδόων λόγων, ἐν οἷς θεωρεῖται τὰ τονιαῖα διαστήματα, καὶ τοῦ καταλειπομένου λείμματος ἀνα‐ πληροῦσι τὸν ψξη. ἐπιτείνουσι τοίνυν ἀπὸ τοῦ φιβ τόνον καὶ ποιοῦσι τὸν φοϛ, ὅς ἐστιν ἐπόγδοος τοῦ | |
30 | φιβ· περιέχει γὰρ αὐτὸν τὸν φιβ καὶ τὸ ὄγδοον αὐ‐ τοῦ τὰ ἑξήκοντα τέσσαρα. πάλιν ἀπὸ τοῦ φοϛ ἐπι‐ τείνουσι τόνον καὶ ποιοῦσι τὸν χμη ἐπόγδοον ὄντα τοῦ φοϛ, ἐπειδὴ περιέχει αὐτόν τε καὶ τὸ ὄγδοον αὐ‐ τοῦ τὰ οβ. πάλιν ἀπὸ τοῦ χμη ἐπιτείνουσι τόνον καὶ | |
35 | ποιοῦσι τὸ ἐπόγδοον αὐτοῦ τὸν ψκθ, ἐπόγδοον ὄντα τοῦ χμη, ἐπειδὴ περιέχει αὐτὸν καὶ τὸν πα ἀριθμὸν, ὅς ἐστιν ὄγδοον τοῦ χμη. εἰς δὲ συμπλήρωσιν τοῦ ἡμιολίου ἀριθμοῦ τοῦ ψξη τὰ λειπόμενά εἰσι λθ. ἀλλ’ οὔτε τοῦ ξδ ἐστὶν ἥμισυ, ἐν ᾧ ὁ πρότερος θεωρεῖται | 268 |
40 | τόνος, οὔτε τοῦ οβ, ἐν ᾧ ὁ δεύτερος τόνος, οὔτε τοῦ πα, ἐν ᾧ ὁ τρίτος· οὐδὲ γὰρ τόνος εἰς δύο ἡμιτόνια πρὸς ἀκρίβειαν διαιρεῖται. Οὐ μὴν ἀλλὰ καὶ ἐπὶ τοῦ διὰ τεσσάρων τοῦ συνε‐ στῶτος ἐκ τόνου καὶ λείμματος καὶ τόνου, οἷον τοῦ | |
45 | ἀρχομένου ἀπὸ προσλαμβανομένου καὶ καταλήγοντος εἰς ὑπατῶν διάτονον, κατασκευάζουσιν οὕτως. λαμβά‐ νουσι πάλιν ἐπίτριτον ἀριθμόν τινα, τὸν σπη πρὸς τὸν σιϛ. καὶ ἀπὸ μὲν τοῦ σιϛ ἐπιτείνουσιν τόνον καὶ ποιοῦσι τὸν σμγ ἐπόγδοον ὄντα τοῦ σιϛ καὶ | |
2(50) | τῷ κζ ὑπερέχοντα. ἐπεὶ δὲ οὐκέτι δυνάμεθα ἀπὸ τοῦ σμγ ἐπιτεῖναι τόνον, ἐπόγδοον γὰρ αὐτοῦ ἀπαρτίζοντα οὐχ εὑρίσκομεν, κατὰ ἄνεσιν ποιοῦμεν τοῦ σπη ὑπ‐ επόγδοον τόνον. ἔστι δὲ ὑπεπόγδοος τοῦ σπη ὁ σνϛ, | |
ὅτι περιέχεται ὑπὸ τοῦ σπη ὅλος καὶ τὸ ὄγδοον αὐτοῦ | 269 | |
55 | τὰ λβ. ἐκ μὲν οὖν τῆς ἀπὸ τοῦ σιϛ γενομένης κατὰ τὸ ἐπόγδοον τοῦ τόνου διάστημα ἐπιτάσεως εὑρίσκετο ὁ σμγ, ἐκ δὲ τῆς ἀπὸ τοῦ σπη τοῦ τόνου γενομένης ἀνέσεως ὁ σνϛ· ἀλλ’ ἵνα συμπληρωθῇ πᾶς ὁ μεταξὺ ἀριθμὸς, λείπεται ὁ ιγ, ὅπερ οὔτε τοῦ κζ οὔτε τοῦ λβ | |
60 | ἐστὶν ἥμισυ. καὶ [ἄλλως] τὸ πᾶν σύστημα τοῦ διὰ τεσσάρων ἐπὶ τῶν προειρημένων ἀριθμῶν ἐστιν οβ· ἀλλ’ ἐν μὲν τῷ κατὰ τὴν ἐπίτασιν ἐπογδόῳ ἀριθμὸς εὑρεθήσεται ὁ κζ, ἐν δὲ τῷ κατὰ τὴν ἄνεσιν ὁ λβ. εἰ δὲ ἀπὸ τοῦ οβ ἀφελοῦμεν τὸν κζ καὶ τὸν λβ, κατα‐ | |
65 | λειπόμενα ἔσται ιγ, μήτε τῶν κζ μήτε τῶν λβ ὄντα ἡμίση. Πάλιν ἐπὶ τοῦ διὰ πέντε τοῦ συνεστῶτος ἐκ τόνου καὶ λείμματος καὶ δύο τόνων οἷον τοῦ ἀρχομένου ἀπὸ ὑπατῶν διατόνου καὶ καταλήγοντος εἰς μέσην κατα‐ | |
70 | σκευάζουσιν οὕτως. λαμβάνουσιν ἡμιόλιόν τινα ἀριθ‐ | |
μὸν τὸν ͵αςϙϛ πρὸς τὰ ωξδ καὶ ἀπὸ τούτου ἐπιτεί‐ νουσι τόνον καὶ ποιοῦσι τὸν ϡοβ τῷ ρη ὑπερέχοντα τοῦ ωξδ. ἐπεὶ δὲ οὐκέτι ἀπὸ τοῦ ϡοβ δυνάμεθα ἐπι‐ τεῖναι τόνον, κατ’ ἄνεσιν αὐτὸν εὑρίσκομεν. | 270 | |
75 | ἀνίεμεν τοίνυν ἀπὸ τοῦ ͵ασϙϛ καὶ εὑρίσκομεν τὸν ͵αρνβ ὑπεπόγδοον ὄντα τοῦ ͵ασϙϛ καὶ ὑπερεχόμενον ὑπ’ αὐτοῦ τῷ ρμδ ἀριθμῷ, ὅς ἐστιν ὄγδοον τοῦ ͵αρνβ. πάλιν τοίνυν ἀπὸ τοῦ ͵αρνβ ἀνίεμεν τόνον καὶ εὑρί‐ σκομεν τὸν ͵ακδ ὑπεπόγδοον ὄντα τοῦ ͵αρνβ καὶ | |
80 | ὑπερεχόμενον ὑπ’ αὐτοῦ τῷ ρκη ἀριθμῷ, ὅς ἐστιν ὄγ‐ δοον τοῦ ͵ακδ. ἀπὸ τοίνυν τοῦ ͵ακδ ἐπὶ τὸν ϡοβ, ἐν ᾧ ἵσταται ὁ κατὰ τὴν ἐπίτασιν τόνος ἀπὸ τοῦ ωξδ, διαλείπει νβ· οὐδενὸς δὲ τῶν ἐν τοῖς τόνοις εὑρεθέν‐ των ἀριθμῶν οὗτός ἐστιν ἥμισυς, οὔτε τοῦ ρη οὔτε | |
85 | τοῦ ρκη οὔτε τοῦ ρμδ· ἐν τούτοις γὰρ ἦν εὑρισκόμενα τὰ τονιαῖα διαστήματα. | |
3 | Ὅτι Νικόμαχος τὴν ἀνωτάτην καὶ πρώτην χορ‐ δὴν ὑπάτην κεκλῆσθαί φησιν ὡς ἐν ἑπταφθόγγῳ διαι‐ ρέων. διότι καὶ ὁ ♄ ὕπατος καὶ πρῶτος ἀπὸ τῆς | |
ἀπλανοῦς· νεάτην δὲ τὴν Σελήνην ὡς ἂν ἐσχάτην τῶν | 271 | |
5 | ἄλλων σφαιρῶν, μέσην δὲ τὸν Ἥλιον. τὰς δὲ παρ’ ἑκάτερα τῆς νήτης καὶ ὑπάτης, τὴν μὲν παρυπάτην κατὰ τὸν Δία, τὴν δὲ παρανήτην οὐ κατὰ τὸν Ἑρμῆν, ἀλλὰ κατὰ τὴν Ἀφροδίτην, ἀτάκτως, εἰ μὴ γραφικὸν εἴη τὸ πταῖσμα· τὴν δὲ ὑπερμέσην κατὰ τὸν Ἄρεα, τὴν | |
10 | δὲ τρίτην κατὰ τὴν Ἀφροδίτην· καὶ τὴν μὲν ὀξεῖαν τὴν Σελήνην, εἴ γε νήτης ἔχει λόγον, τὸν δὲ βαρὺν τὸν Κρόνον, εἴπερ ὑπάτης. Οἱ δὲ δὴ πρῶτοι ἀπὸ τῶν πρὸς ἡμᾶς ἀρξάμενοι ὑπάτην μέν φασι τὸν πρῶτον τὸν τῆς Σελήνης | |
15 | ὡς ἂν ἀρχὴν φθόγγων, νεάτην δὲ ὡς ἐσχάτην ἀφ’ ἡμῶν τὴν τοῦ Κρόνου. ἡ μὲν γὰρ ὑπάτη τοῖς γεν‐ νητοῖς οἰκειοτέρα, διότι ἐν πολλῇ οὐσίᾳ δύναμις ἐλάτ‐ των· ἵνα διὰ μὲν τὸ χθόνιον ἔχῃ τὸ πολὺ, διὰ δὲ τὸ πολὺ τὸ ἀσθενές. ἐν τῷ γὰρ ἓν ἕκαστον εἶναι τῶν | |
20 | ὄντων τόδε μάλιστά ἐστιν ὃ δύναται. κατὰ τοῦτο οὖν | |
ἡ ὑπάτη τῇ Σελήνῃ ἀπεδόθη, ὡς ἂν καὶ αὐτῇ ποικίλῃ τινὶ καὶ πολυτρέπτῳ καὶ μὴ τοσαύτην ἐχούσῃ δύναμιν διὰ τὴν πορρωτέρω τῶν πρώτων ἀπόστασιν, καὶ καθότι [δέ] στάσις τις ὥσπερ ἐστὶν ἄχρι τοῦδε τῶν οὐρανίων, | 272 | |
25 | ὥσπερ καὶ τῶν ἀπὸ νήτης φθόγγων ἐπὶ τὴν ὑπάτην οὐκ ἐπιδεχομένων [ὁμοούσιον] ἑτέραν φύσιν εἰς τὰ πρόσω. διὰ τοῦτο τῇ Σελήνῃ ἀπεδόθη· καὶ γὰρ ἡμεῖς πρώτῃ προσβάλλομεν ὡς περιγειοτέρᾳ τῇ Σελήνῃ. καὶ ὁ φθόγγος ὁ βαρὺς ἀπὸ τῶν κοίλων τῶν πρὸς λαγόσι | |
30 | τῶν κατωτάτω μορίων τοῦ σώματος ἄρχεται, ὁ δὲ ὀξὺς ἀπὸ ὤτων τε καὶ ἐγκεφάλου καὶ κροτάφου, ἃ δὴ τῶν ἄνω μόρια. νεάτη τοίνυν ἡ τοῦ Κρόνου, διότι μήτε προσθήκης ἐστὶν ἐπιδεκτικὴ καὶ τὰ ἄλλα ἐμπεριέχει ἐν τῇ ἑαυτῆς οὐσίᾳ τε καὶ δυνάμει. οὐκοῦν καὶ διὰ τὸ | |
35 | εἶναι τὴν μὲν βραδεῖαν, τὸν δὲ ταχὺν ἐν τῷ κατὰ τὰ αὐτὰ τῷ κόσμῳ φέρεσθαι καὶ καθ’ ὑπόλειψιν τοὺς πλάνητας ἡ Σελήνη ὑπάτη. ὁ μὲν γὰρ Κρόνος μά‐ λιστα ἐγγυτέρω τῆς ἀπλανοῦς τυγχάνει τριακοστῷ μοί‐ ρας ἀπολειπόμενος, ὥστε ἐν ὁμαλῷ κινήματι δύο λεπτὰ | |
40 | ἡμερήσια ἀπολείπεσθαι τῆς ὅλης περιφορᾶς τοῦ παντὸς, ὁ δὴ τριακοστὸν μέρος ἐστὶ τῆς μοίρας. τὴν δὲ Σελήνην τῷ ὁμαλῷ κινήματι αὐτῆς ἡμερησίῳ ἐξετά‐ ζοντας εὑρίσκειν ἐστὶν ἀπολειπομένην μοίρας μὲν ιγ, λεπτὰ δὲ πρῶτα ιδ. ὥστε εὐλόγως τὸν μὲν εἶναι πάν‐ | |
45 | των ὀξύτατον, τὴν δὲ εἶναι πάντων βραδυτέραν. | 273 |
4 | Ὅτι ὅσοι τῇ ὀγδόῃ χορδῇ προσκαθῆψαν ἑτέρας, οὐ λόγῳ τινὶ, τῇ δὲ πρὸς τοὺς ἀκροατὰς ψυχαγωγίᾳ προήχθησαν. ὥσπερ δὴ καὶ Πρόφραστός τε ὁ Πιερίτης τὴν ἐννάτην χορδὴν προσκαθῆψε, καὶ Ἱστιαῖος τὴν | |
5 | δεκάτην ὁ Κολοφώνιος, Τιμόθεος ὁ Μιλήσιος τὴν ἑν‐ δεκάτην, καὶ ἐφεξῆς ἄλλοι. ἔπειτ’ εἰς ὀκτωκαιδεκάτην ἀνήχθη χορδὴν τὸ πλῆθος παρ’ αὐτῶν. ὥσπερ καὶ Φερεκράτης ὁ κωμικὸς ἐν τῷ ἐπιγραφομένῳ Χείρωνι καταμεμφόμενος αὐτὸν τῆς περὶ τὰ μέλη ῥᾳδιουργίας | |
10 | φαίνεται. Αἱ μὲν οὖν πᾶσαι χορδαὶ κατὰ τὰ τρία γένη [εἴτε καὶ πλείω] εἴκοσι καὶ ὀκτὼ τὸ πλῆθος· ὧν οὔτε πλείους οὔτε ἐλάττους διὰ τὸ μὴ ἐπιδέχεσθαι τὴν ἀν‐ θρώπων φωνὴν μήτε ἐπὶ τὸ βαρὺ παρὰ ταύτας βαρύ‐ | |
15 | τερον, εἶναι γὰρ τοὺς λεγομένους παρ’ αὐτὰς βυκα‐ νισμοὺς καὶ βηχίας, φθέγματα ἄσημα καὶ ἄναρθρα καὶ ἐκμελῆ, ἐπὶ δὲ τὸ ὀξὺ τούς τε κοκκυσμοὺς καὶ τοῖς τῶν λύκων ὠρυγμοῖς φθόγγους παραπλησίους, ἀξυνέ‐ τους τε καὶ ἀναρμόστους καὶ οὐκ ἐπιδεχομένους συμ‐ | |
20 | φωνίας κοινωνίαν. αἱ δὲ καθ’ ἕκαστον κατὰ μὲν τοὺς δύο μέσας ποιοῦντας ἐν τοῖς διεζευγμένοις ἵνα ᾖ τετράχορδον πενταχόρδῳ κατὰ διάζευξιν σύμφωνον, —ιη. ὅσοι δὲ κατὰ τὸ ἀμετάβολον οὐ πλείους μιᾶς μέσης ποιοῦνται, ἀλλὰ κέχρηνται αὐτῇ ὡς τῶν μὲν | 274 |
25 | ὀξυτέρων βαρυτέρᾳ, τῶν δὲ βαρυτέρων ὀξυτέρᾳ, δεκα‐ πέντε χορδὰς εἰς τὸ δὶς διὰ πασῶν κατὰ τὸ ἀμετάβο‐ λον σύστημα ὁρίζονται. ᾧ δὴ καὶ ὁ Πτολεμαῖος συν‐ αρέσκεται καὶ ἄχρι τούτου τοῦ ἀριθμοῦ δεῖν ἵστασθαι λέγει· τοὺς μὲν τόνους τοῖς εἴδεσι τοῦ διὰ πασῶν | |
30 | ἰσαρίθμους λέγων καὶ τοῖς εἴδεσι τοῦ τε διὰ τεσσάρων καὶ τοῦ διὰ πέντε· ἐξ ὧν καὶ τὸ ὁμόφωνον [πάντα τούτῳ] ἐμπεριλαμβάνεσθαι κατὰ τοῦτο τὸ πλῆθος τῶν φθόγγων· τὴν δὲ μέσην ἀκριβῶς εἶναι μέσην, περα‐ τοῦσθαι δὲ ἄμφω τὰ ἄκρα ἐπὶ μὲν τὸ βαρὺ προσλαμ‐ | |
35 | βανομένῳ, ἐπὶ δὲ τὸ ὀξὺ νήτῃ ὑπερβολαίων. | |
5 | Ὅτι οὐκ ἐπειδὴ προῆλθόν τινες εἰς τὸ τῶν κη φθόγγων πλῆθος, ἔξω τῆς τοῦ παντὸς πεπτωκότες φανοῦνται συμφωνίας, ἀλλ’ ἀκολούθως τῇ φυσικῇ τοῦ | |
Πυθαγόρου καὶ Πλάτωνος δόξῃ. ἥ τε γὰρ τῶν θείων | 275 | |
5 | ψυχῶν φύσις τῇ ἑπτακαιεικοσιπλασίᾳ κατατετμημένη, προσλαμβάνουσά τε τὴν πάντων ἀρχὴν μονάδα (ὥσπερ δὴ κἀν τοῖς φθόγγοις συμβολικῶς καλοῦσι προσλαμ‐ βανόμενον) τοσοῦτον ἀποτελεῖ πλῆθος, ἀρχομένη μὲν ἀπὸ τῶν ἑπτὰ ὅρων, οὓς δὴ ὑποθεὶς ὁ Πλάτων τήν τε | |
10 | τριπλῆν καὶ κυβικὴν αὔξησιν εὕρατο, περατουμένη δὲ εἰς τοῦτο. | |
6 | Καὶ γὰρ δὴ καὶ οἱ φθόγγοι σφαίρας ἑκάστης τῶν ἑπτὰ ἕνα τινὰ ψόφον ποιὸν [πρώτους] ἀπο‐ τελεῖν πεφυκυίας, οἷς δὴ τὰ στοιχεῖα τὰ φωνήεντα ἐπωνόμασται, ἄρρητα μὲν αὐτὰ καθ’ αὑτὰ καὶ πᾶν | |
5 | τὸ ἐκ τούτων συντιθέμενον ὑπὸ τῶν σοφῶν ἀπο‐ | |
καλούμενα. διότι κἀνταῦθα τοῦτο δύναται ὁ φθόγ‐ γος, ὃ δὴ ἐν ἀριθμῷ μὲν μονὰς, ἐν δὲ γεωμετρίᾳ σημεῖον, ἐν δὲ γράμμασι στοιχεῖον· συντιθέμενα δὲ μετὰ τῶν ὑλικῶν (οἷα δὴ τὰ σύμφωνα) ὥσπερ ἡ ψυχὴ | 276 | |
10 | μὲν τῷ σώματι, ἡ δὲ ἁρμονία ταῖς χορδαῖς, ἀποτελεῖ ἡ μὲν ζῶα, ἡ δὲ τόνους καὶ μέλη, τὰ δὲ δραστικὰς δυνάμεις καὶ τελεστικὰς τῶν θείων. διὸ δὴ ὅταν μάλιστα οἱ θεουργοὶ τὸ τοιοῦτον σεβάζωνται, σιγμοῖς τε καὶ ποππυσμοῖς καὶ ἀνάρθροις καὶ ἀσυμφώνοις | |
15 | ἤχοις συμβολικῶς ἐπικαλοῦνται. —Ὅτι ὅσοι τῇ ἑπ‐ ταφθόγγῳ ὡς φυσικῇ κατεχρήσαντο συμφωνίᾳ, ἐντεῦ‐ θεν ἔλαβον· οὐκ ἀπὸ τῶν σφαιρῶν τὸ τοιοῦτον, ἀλλ’ ἀπὸ τῶν ἐνδεδομένων εἰς τὸ πᾶν ἐξ αὐτῶν ἐναρμονίων ἤχων, οὓς δὴ καὶ μόνους τῶν στοιχείων φωνήεντάς τε | |
20 | καὶ φθογγήεντας καλοῦμεν. ἀλλ’ ἐπειδὴ ἁπλῆ μὲν ἡ τούτων ἐξέτασις οὖσα οὐχ ἱκανή τι σημαίνειν ποικίλον, δεῖ [δὲ] τῇ συμπλοκῇ ὥσπερ δὴ κἀπὶ τῶν χορδῶν καὶ τῇ ἄλλου πρὸς ἕτερον καθαρμόσει τὸ σύμπαν ἀπο‐ τελεῖσθαι. ὅπως μὲν ἑβδομὰς τετράδι τε καὶ μονάδι | |
25 | συγγενὴς, ἐν τῷ περὶ ἑβδομάδος ἡμῖν εἴρηται. | |
τετράδι οὖν πολλαπλασιασθέντα κατ’ ἀνακύκλησιν ἀπὸ τοῦ πρώτου ἐπὶ τὸ ἔσχατον πῆ μὲν κατὰ παραύξησιν, πῆ δὲ καθ’ ὑφαίρεσιν τὸν τοσοῦτον ἀριθμὸν ποιεῖ. καὶ γὰρ δὴ κἀπὶ τῶν σφαιρῶν, δῆλον δ’ ὡς ἀναλόγως | 277 | |
30 | κἀπὶ τῶν ψυχῶν τῶν περιεχουσῶν τὰς σφαίρας καὶ ἀναγουσῶν εὐτάκτῳ φορᾷ ἰδία τις * κατὰ τὴν τούτων ἐπαύξησιν, τοῦ οἰκείου φθόγγου πλεονάζοντος, τῶν δ’ ἄλλων ῥυθμῷ καὶ τάξει ἐλλείποντος ἑκάστου κατὰ τὸν ἀριθμὸν, ὀκτωκαιεικοσόφθογγος λεγομένη κατὰ τὴν | |
35 | Αἰγυπτίων προσηγορίαν ὑπάρχει. | |
7 | Ἀφ’ ὧν δὴ καὶ Πυθαγόραν ὁρμώμενον τήν τε πρώτην διαίρεσιν καὶ τῆς ψυχῆς ἐπέκτασιν ἄχρι τοῦδε ὁριζομένην εὑρεῖν. καὶ γὰρ καὶ αὕτη τριπλῆ, ἔκ τε ταὐτοῦ καὶ θατέρου καὶ οὐσίας τὴν ὑπόστασιν, παρα‐ | |
5 | πλησίως δὲ τῇ ὑποστάσει τριττὸν ὁρισμὸν ἐπιδεχομένη εἴς τε τὸ λογικὸν καὶ τὸ ἄλογον καὶ τὸ φυσικόν (ὥσπερ δὴ τό τε ἐναρμόνιον καὶ τὸ διάτονον καὶ τὸ χρωμα‐ τικόν). καὶ φαίνεταί γε ἐντεῦθεν ἡ διχῇ διαίρεσις ἐν τῇ ψυχογονίᾳ αὐτῇ, τοῖς μὲν πλανωμένοις κατὰ τοὺς | |
10 | ἑπτὰ φθόγγους ἀποδιδοῦσα τὴν τῶν εἰκοσιοκτὼ φυσι‐ κῶν τε καὶ ψυχικῶν φθόγγων ἐναρμόνιον κατ’ οὐσίαν σύστασιν· —τῇ δὲ τῆς ἀπλανοῦς, ὡς ἂν τῆς ταὐτοῦ μὲν φύσεως οὔσης, ἐμπεριλαμβανούσης δὲ ὥσπερ ἐν τῇ κινήσει τοὺς πλάνητας οὕτω καὶ τὴν κατὰ τὸν | 278 |
15 | θάτερον ἀριθμὸν κυβικὴν αὔξησιν, λϛ ἀριθμὸς τέλειος καὶ τοῦ ὀρθογωνίου τριγώνου ἔχων τὴν αὔξησιν, τῇ ὑποτεινούσῃ τῶν δύο πλευρῶν παραβαλλομένων ἅμα τῇ πάντων ἀρχῇ ἀποτελούμενος, κἀντεῦθεν ἡ πρώτη τετρακτὺς τὴν τῶν συμφωνιῶν πηγὴν ἔχουσα | |
20 | ἀναφαινομένην τῶν ϛ η θ ιβ, ὑπάτης τε καὶ μέσης καὶ νήτης καὶ παραμέσης ἔχουσα λόγον καὶ τὸν ἐπόγ‐ δοον περιλαμβάνουσα. ὑπάτη μὲν γὰρ κατὰ τὸν ϛ ἀριθμὸν, μέση δὲ κατὰ τὸν η, νήτη δὲ κατὰ τὸν ιβ, παραμέση δὲ κατὰ τὸν θ. ὁ δὲ ἐπόγδοος ἐν τῷ η καὶ | |
25 | θ πρῶτος ἐμφαίνεται. ὁ δὴ καταπυκνούμενον ταῖς διεσιαίαις ἀποστάσεσιν εἰς τοσοῦτον προὔβη, ᾧ δὴ | |
δεκανῶν τε ἀριθμὸς ὥρισται καὶ ὡρονόμων. | 279 | |
8 | Ἀλλὰ πῶς φησιν ὀκτὼ σφαιρῶν οὐσῶν ἑπτὰ λέγονται εἶναι οἱ φθόγγοι; ἢ ὅτι ἡ μὲν ἀεὶ κατὰ τὰ αὐτὰ κινουμένη ἀδιάφορον καὶ μίαν ποιεῖται τοῦ φθόγ‐ γου τὴν ἐκφώνησιν· οὐκ ἔχουσα δὲ ἰσοταχῆ οὐδὲ | |
5 | παραπλησίαν ἄλλην, οὐδ’ ἂν ἐν ἁρμονίᾳ τάσσοιτο. [διότι ἐν δυσὶ πρώτοις τὸ τοιοῦτον οὔτε ἴσοις, οὔτε πάντη ἐξηλλαγμένοις.] οἱ δὲ δὴ τῶν πλανωμένων πολλὴν τὴν ἀνομοιότητα καὶ τὴν ἐναντίαν πρὸς αὐτὴν ἔχοντες * ἐδείκνυτο κίνησιν τοσαύτην, ὅσην ἡ τοῦ αὐ‐ | |
10 | τοῦ πρὸς τὴν θατέρου. διὸ δὴ τὸν ἀπ’ αὐτῆς φθόγ‐ γον ἄρρητον εἴασαν. | |
9 | Ὅτι οἱ φθόγγοι οἱ ὑπὸ τῶν τὴν χειρουργίαν μετιόντων εἰκοσιοκτώ εἰσιν οἵδε· α Προσλαμβανόμενος β ὑπάτη ὑπατῶν | |
5 | γ παρυπάτη ὑπατῶν δ ὑπατῶν ἐναρμόνιος ε ὑπατῶν χρωματική ϛ ὑπατῶν διάτονος ζ ὑπάτη μέσων | |
10 | η παρυπάτη μέσων θ μέσων ἐναρμόνιος ι μέσων χρωματική | |
ια μέσων διάτονος ιβ μέση | 280 | |
15 | ιγ τρίτη συνημμένων ιδ παρανήτη συνημμένων ἐναρμόνιος ιε συνημμένων χρωματική ιϛ συνημμένων διάτονος ιζ νήτη συνημμένων | |
20 | ιη παράμεσος ιθ τρίτη διεζευγμένων κ διεζευγμένων ἐναρμόνιος κα διεζευγμένων χρωματική κβ διεζευγμένων διάτονος | |
25 | κγ νήτη διεζευγμένων κδ τρίτη ὑπερβολαίων κε ὑπερβολαίων ἐναρμόνιος κϛ ὑπερβολαίων χρωματική κζ ὑπερβολαίων διάτονος | |
30 | κη νήτη ὑπερβολαίων. | |
10 | Ὥσπερ οὖν ἐνταῦθα τὰ μὲν τοῦ ὑπατῶν τε‐ | |
τραχόρδου κατὰ τρία γένη, τὰ δὲ μέσων, τὰ δὲ συνημ‐ μένων, τὰ δὲ διεζευγμένων, τὰ δὲ ὑπερβολαίων, οὕτω χρὴ νομίζειν ἑκάστην σφαιρικὴν καὶ θείαν οὐσίαν τὸ | 281 | |
5 | μὲν ἐν τῷ παντὶ ὡς ἀρχῆς ἔχον λόγον παρελέσθαι πρὸς ἁρμονίαν καὶ σύστασιν κόσμου, τὸ δὲ ὡς μεσότητος, τὸ δὲ ὡς τέλους, —καὶ τὸ μὲν συναπτικὴν συνεργίαν ἀποτελεῖν, τὸ δὲ διαστατικήν. οἷς ἅπασι τὴν προνοίαν καταχρωμένην ἀριθμόν τε τὸν θεῖον | |
10 | πάγιον καὶ ἀσάλευτον καὶ ἐμμελὲς ἑαυτῷ ποιεῖν τὸ πᾶν, πᾶσαν οὐσίαν ἀρχικήν τε καὶ ὑπηρετικὴν τῇ τοιαύτῃ ἀναλογίᾳ συνδέουσαν. ἡ δ οὖν πρώτη τε‐ τρακτὺς, ἡ καὶ τῶν τετραχόρδων τούτων ῥίζα, τρόπον τινὰ πασῶν ἐστι παρεκτικὴ τῶν κατὰ γένη διαιρέσεων, | |
15 | ἀποτελοῦσα ὡς ἐφάμην τὸν λϛ ἀριθμὸν τῆς ἀπλανοῦς οἰκεῖον προσθήκῃ μονάδος, ἣν δὴ καὶ κλεῖδα τῶν ὄν‐ των ἐν τῷ τρισκαιδεκάτῳ τῶν νόμων Πλάτων βουλό‐ μενος δεικνύναι ὑστάτην πασῶν τῶν διεξοδευθεισῶν ἐπιστημῶν ἀπαριθμησάμενος ἔτι καὶ ἀνθρώποις φησὶ | |
20 | ξύμφωνον χρείαν καὶ ξύμμετρον ἀπενείματο. | 282 |